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Abstract. The description of soil water dynamics using the Darcy–Buckingham approach involves the
determination and use of soil hydraulic conductivity K v. soil water content θ functions. Many of the methods
developed for the measurement of K are based on simplifying assumptions, such as the unit gradient and the choice
of fixed models for the K(θ) relation. The need of quick, simple, and inexpensive methods to measure K(θ) in the
field using a large number of replicates has also led soil physicists to develop simple methods. This paper presents
a procedure that makes use of parameters of equations used to explain the internal water drainage process, and that
naturally leads to the exponential character of the K(θ) relation. Results show that the parameterised equation
represents a more rigorous estimation of K(θ), compared with the methods that assume unit gradient.
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Introduction

The Darcy–Buckingham approach for the description of soil
water dynamics involves the determination and use of soil
hydraulic conductivity K v. soil water content θ functions.
One of the most convenient field methods of the
determination of K(θ) relations uses previously saturated
soil profiles submitted to internal drainage, with a covered
soil surface to prevent evaporation loss and rainfall gain.
Some of the earliest studies on this subject are those of
Youngs (1964), La Rue et al. (1968), and Davidson et al.
(1969). Hillel et al. (1972) developed a procedure to handle
data from internal drainage experiments, and this has been
widely used to calculate soil hydraulic conductivity of field
soils. The need for quick, simple, and inexpensive methods
to measure K(θ) using a large number of replicates has also
led soil physicists to develop simple methods, see for
example Libardi et al. (1980), Sisson et al. (1980), and
Chong et al. (1981), all of them using the unit gradient
(∂H/∂z = 1) assumption, where H is the hydraulic potential
head, taken as the sum of the matric potential head h and the
gravitational potential head z. These methods were later
compared by Jones and Wagenet (1984). Although very
straightforward, the use of the resulting K(θ) relations
remains restricted by their exponential character. Very small
fluctuations in θ, even within the experimental error, yield
large variations in K. Reichardt et al. (1998) made a critical
analysis of the use of the K(θ) relations by the flux-gradient
approach.

Most of these field methods are based on simplifying
assumptions, such as the unit gradient and the choice of fixed

models for the K(θ) relation. The procedure presented by
Hillel et al. (1972) is an exception; however, their method of
handling data needs to be updated in view of the computer
tools now available. This paper presents a procedure, called
parameterised since it makes use of parameters of models
used to describe the internal water drainage process, which
naturally leads to the exponential character of the K(θ)
relation.

The use of parameters to define K(θ) relations has also
been used in the laboratory, from 1-step outflow experiments
(Kool et al. 1985) and from multi-step outflow experiments
(van Dam et al. 1994) that use parameters of equilibrium
relations, such as those of van Genuchten (1980) for the h(θ)
relation and those of Mualem (1976) for the K(θ) relation. In
this study, we use parameters that describe dynamic relations
that prevail during the internal drainage process of a field
soil, such as θ(t) and H(t).

Material and methods

In an internal drainage experiment, with the soil surface covered with
an impermeable sheet, the integration of the Richards’ equation leads to
the expression used for the determination of the K(θ) relation at a
chosen depth z = L:

where z is the position coordinate, t the time, and SL the soil water
storage from soil surface down to depth L.
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To make K calculations using Eqn 1, a set of θ(z,t) and H(z,t) data
was collected over a chosen internal drainage period t = 0 to t = T. Since
the drainage process is decelerated, i.e. with rates ∂θ/∂t and ∂H/∂t
decreasing asymptotically in time, the parameterised method suggests
that the above datasets are tested to fit semi-logarithmic linear
regressions of the types:

θz(t) = a + b ln t (2)

SL(t) = c + d ln t (3)

HL(t) = e + f ln t (4)

It is important to realise that for t = 0, lnt = –∞, these models fail for
very short times, and therefore, the regressions do not include θo, So,
and Ho, the respective values corresponding to t = 0.

If the fitting of the experimental data according to Eqns 2–4 is
significant (as already shown by Villagra et al. 1994), Eqn 1 can be
‘parameterised’ as follows:

where the hydraulic gradient G is calculated by finite differences, and
e′ = (e1 – e2)/2∆z and f ′ = (f1 – f2)/2∆z; e1, e2, f1, and f2 are the
coefficients of Eqn 4 for the regressions of H(t) at depths (L + ∆z) and
(L – ∆z).

Substituting Eqns 5 and 6 into Eqn 1, we obtain a K v. t relation:

Equation 7 allows the calculation of K for different times within the
time interval used for the regressions. For each chosen time, there is a
corresponding value of θ, given by Eqn 2; therefore, Eqn 7 can be
transformed into a K v. θ relation for depth L. From Eqn 2 we have:

and

Introducing Eqns 8 and 9 into Eqn 7 yields:

To compare Eqn 10 with the most commonly used exponential K(θ)
model:

in which Ko and θo are the values of K and θ for the saturated soil
condition and γ is a regression constant, we have to use the
transformation θ = (θ – θo), which takes Eqn 10 to the form:

which is the ‘parameterised’ K(θ) relation, including only parameters
of regressions 2, 3, and 4. Eqn 10 is useful in the range in which the
regressions 2, 3, and 4 are significant. It is important to recall that they
fail for times very close to zero.

Comparing Eqns 11 and 12, it can be seen that γ = –1/b, that in
Eqn 12 Ko = –d.exp[(a/b) + γθo], and that hydraulic gradient
G = [e′ + (f ′/b)(θ – a)] is present only in Eqn 12 and is a function of θ.
G(θ) is the contribution of the gradient [∂H/∂z]L to the estimation of
K(θ). G = 1 corresponds to the ‘unit gradient’ hypothesis (Reichardt
1993), which prevails when e′ = 1 and f ′ = 0. Since Eqn 12 includes
G(θ), the parameterised equation is more complete than the simple
methods of Libardi et al. (1980) and Sisson et al. (1980). The estimate
of Ko from the parameterised Eqn 12 can be shown to be exactly the
same as that of Libardi et al. (1980) when their definition of a is equal
to one.

To test Eqn 12, we used data of an internal drainage experiment
carried out by Zevallos (1978) on a very homogeneous Oxisol profile
(Red Yellow Latosol, sandy phase), of the county of Piracicaba, SP,
Brazil, also used by Libardi et al. (1980) to test their method. After
flooding experimental plots up to steady infiltration rates, the soil
surface was covered with a plastic sheet in order to follow the internal
drainage process, during a period of 45 days. During this period, a
H(z,t) dataset was obtained through mercury manometer tensiometer
readings, installed in triplicate at the depths of 0.15, 0.30, 0.45, 0.60,
0.75, 0.90, 1.05, 1.20, and 1.35 m from soil surface. The θ(z,t) dataset
resulted from the conversion of tensiometer (h) data into θ data, using
soil water characteristic curves made in the laboratory with undisturbed
soil samples.

To use the parameterised Eqn 12, θ(z,t) and H(z,t) data have to be
handled as shown below, presented in the form of a sequence of steps,
as it was made by Hillel et al. (1972).
(1) Make θ (m3/m3) v. ln t (t = day) linear regressions, according to

Eqn 2, for all depths. Judge their significance using a convenient
statistical test. If significant, record parameters a and b for each
depth (Table 1).

(2) Calculate soil water storage SL (mm) using the trapezoidal method
(SL = θ

–
L) for all depths z = L (mm) and times.

(3) Make SL v. ln t linear regressions, according to Eqn 3, for all
depths, if significant record parameters d (Table 1).

(4) Make H (m H2O) v. lnt linear regressions, according to Eqn 4, for
all depths, if significant record parameters e and f (Table 2).

(5) Calculate e′ and f ′ according to Eqn 6 for zi = L, using
∆z = zi+1 – zi (m), e1 and f1 being parameters of regression of Eqn
4, for zi+1; e2 and f2 for zi–1.

(6) Write the parameterised Eqn 12 for any chosen depth L,
introducing values of a, b, d, e′ and f ′.

Results and discussion

Parameters a, b, c, d, e, and f are presented in Tables 1 and 2,
together with the R2 values of the respective coefficients of
variation (CV). For θ v. lnt and SL v. lnt regressions, their
values are very high (>0.98) indicating that models of Eqns
2 and 3 describe very well the variation of these variables
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  θ = –0.0211. ln t + 0.266

R 2 = 0.983
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**P < 0.01 (Owen 1962). 

Table 1. Regression parameters a, b, c, and d from Eqns 2 and 3 together with the R2 
coefficient values for the different depths

Depth (m) a b R2 c d R2

0.15 0.2392 –0.0164 0.997** 35.878 –2.459 0.997**
0.30 0.3019 –0.0179 0.999** 81.157 –5.137 0.999**
0.45 0.2844 –0.0180 0.991** 123.813 –7.841 0.998**
0.60 0.3074 –0.0231 0.998** 169.926 –11.308 0.998**
0.75 0.2660 –0.0211 0.983** 209.830 –14.478 0.996**
0.90 0.2693 –0.0205 0.979** 250.218 –17.555 0.994**
1.05 0.2691 –0.0188 0.979** 290.578 –20.382 0.993**
1.20 0.2855 –0.0217 0.985** 333.408 –23.638 0.992**
1.35 0.2867 –0.0227 0.988** 376.419 –27.050 0.993**

**P < 0.01 (Owen 1962).

Table 2. Values of saturated soil water content θo, regression parameters e and f from Eqn 4 
together with the R2 coefficient values for the different depths

Parameters e′ and f ′ were obtained from (ei+1 – ei–1)/2(zi+1 – zi) and (fi+1 – fi–1)/2(zi+1 – zi), respectively

Depth (m) θo (m
3/m3) e f R2 e′ f ′

0.15 0.374 –107.287 –25.121 0.908** – –
0.30 0.389 –120.824 –25.272 0.927** 1.0423 –0.0216
0.45 0.390 –138.563 –24.472 0.949** 0.8817 –0.0776
0.60 0.419 –147.266 –22.945 0.952** 0.7296 –0.0536
0.75 0.386 –160.453 –22.863 0.968** 0.9243 0.00343
0.90 0.382 –174.997 –23.048 0.970** 0.9070 –0.0415
1.05 0.373 –187.662 –21.618 0.977** 0.8136 –0.0600
1.20 0.391 –199.411 –21.246 0.977** 0.7917 –0.0126
1.35 0.385 –211.410 –21.240 0.973** – –

Fig. 1. Linear regression between soil water content θ and ln t (t in days) for the z = 0.75 m depth.



286 Australian Journal of Soil Research K. Reichardt et al.

during the chosen time interval of the internal drainage
process. As examples, Figs 1 and 2 show the experimental
θ75 and S75 data for z = 0.75 m, and how well the solid lines
(Eqns 2 and 3, respectively) fit the data.

Regressions of H v. ln t show somewhat smaller values of
R2 (Table 2) when considering the full range of data, but still
high enough to assume that Eqn 4 describes field hydraulic
water potential data. Figure 3 shows an example of H v. ln t
plots, for the depths 0.60 and 0.90 m, on which it can be
observed that for longer times, H data start deviating from
the straight line behaviour, which should be a consequence of
deviations from the unit gradient. As already stated, for the
unit gradient to prevail, the parameters e′ and f ′ should
assume values equal to 1 and 0, respectively. This happens
when in Eqn 6, (e1 – e2) is equal to 2∆z and regression lines
of Fig. 3 are parallel, i.e. f1 = f2, so that f1 – f2 = 0. Values of

e′ and f ′ shown in Table 2 differ somewhat from 1 and 0,
which indicates that the unit gradient did not prevail during
the internal drainage process, in agreement with statements
of Reichardt (1993). The high values of R2 presented in Table
2 indicate that parameterised equations of type 12 can be
written for all depths. The missing values of e′ and f ′ for the
first and last depth are due to the finite difference procedure
of Eqn 6. The parameterised equation for the depth
L = 0.75 m, using the respective parameters found in Tables
1 and 2 for instance, is:

S = –14.478. ln t + 209.83

R 2 = 0.996
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Fig. 2. Linear regression between soil water storage S and ln t (t in days) for the z = 0.75 m depth.
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Fig. 3. Distribution of the hydraulic potential head H as a function
of lnt (t in days) for the depths of z = 0.60 m and z = 0.90 m showing
that, for longer times, H starts deviating from the straight line.

–1

0

1

2

3

4

5

6

7

8

9

–0.2 –0.15 –0.1 –0.05 0

(θ–θo) m3/m3

Ln
 K

 (
m

m
/d

ia
1 )

Parameterised
Libardi et al. (1980)
Hillel et al. (1972)

Hillel´s linear 
trend line

Fig. 4. Results showing that the new parameterised method (Eqn
12a) is comparable to the Hillel et al. (1972) and Libardi et al. (1980)
methods, at z = 0.75 m.

( ) ( )
( )

θ
θ

θ

  4198.9 exp 47.304 – 0.386
K =   (parameterised)   (12a)0.75 0.9675 – 0.1626 



Soil hydraulic conductivity in the field Australian Journal of Soil Research 287

http://www.publish.csiro.au/journals/ajsr

For the same depth, the K(θ) relations calculated by the
methods of Hillel et al. (1972) and Libardi et al. (1980) are,
respectively:

K(θ)0.75 = 4025.5 exp[45.313 (θ – 0.386)] (Hillel) (13)

K(θ)0.75 = 4198.9 exp[47.304 (θ – 0.386)] (Libardi) (14)

Table 2 also presents the saturated field values of θ = θo, for
t = 0, measured by tensiometers, which for the depth of
0.75 m is 0.386 m3/m3. Equations 12a, 13, and 14 are very
similar, indicating that the new parameterised equation is
comparable to the other two, well-established methods.
Figure 4 also shows graphically how well the 3 methods
mach. As already said, the coefficients Ko and γ are the same
for Eqns 12a and 14, since both come from regressions of θ
v. lnt, differing slightly from those of Eqn 13, which come
from the final regression of K v. θ data. The scatter of the
Hillel data comes from the finite differences ∆θ/∆t and
∆H/∆z used in this method. The parameterised equation has
the advantage over Libardi’s of including the contribution of
the gradient, which for this depth is G(θ) = (0.9675 –
0.1626*θ), differing from the unit gradient G = 1 built in to
Eqn 14.

In conclusion, it can be said that the advantages of the
new equation are: (1) over Hillel et al. (1972) by presenting
an updated procedure to handle internal drainage data; and
(2) over Libardi et al. (1980), Sisson et al. (1980), and Chong
et al. (1981) by including quantitatively the effect of the
hydraulic gradient on K calculations.
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