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RESUMO 
Modelos podem ser usados para investigar uma série de assuntos relacionados à produção 
vegetal, seja para facilitar o entendimento quanto ao comportamento da cultura dentro de seu 
contexto ambiental, explorar seu potencial produtivo sob certas condições, verificar hipóteses, 
melhorar o conhecimento de processos, estimular a integração interdiciplinar, predizer o 
comportamento de um sistema ou ser utilizado como ferramenta de gerência e tomada decisória. 
Como vantagens, lhe são atribuídos o custo menos oneroso do que experimentos convencionais 
que, cada vez mais, possuem um elevado custo de instalação, manutenção e obtenção dos dados - 
sem, no entanto ter a pretensão de substituí-los -, a velocidade na obtenção de resultados, o uso 
em diferentes escalas e a criação de cenários alternativos. Suas limitações abrangem a dificuldade 
na validação de modelos já existentes, alto custo de obtenção de alguns dados, como por 
exemplo, séries meteorológicas, variabilidade espacial e seleção de dados de entrada. Muitas são 
as formas de avaliar o desempenho de um modelo e, por vezes, deduções errôneas são tiradas, 
descaracterizando a utilização desta ferramenta. O uso da modelagem em agricultura ainda é 
bastante incipiente no Brasil, quando comparado a outros países. Este estudo tem como objetivo 
abordar alguns dos principais conceitos e mecanismos de modelagem em agricultura, com o 
intuito de contribuir e estimular as pesquisas, ainda escassas nessa área, e sua difusão. 
 
Termos para indexação: modelagem, linguagem computacional, análise sensitiva 

 
APLICATIONS AND LIMITATIONS OF CROP MODELS – BRIEF REVIEW 

 
ABSTRACT 
Models can be used to investigate a series of issues related to crop production, facilitating the 
knowledge regarding crop behavior in its environmental context, to exploit its potential 
production under certain conditions, testing hypotheses, improve the knowledge of the process, 
stimulate interdisciplinary integration, diagnosis of a system behavior or it can be used as a 
management tool, supporting decisions. As advantages, the costs are cheaper than conventional 
trials, which have a high cost of installation, maintenance and acquisition of data - not intended to 
replace them - the speed is fast in obtaining results, it is used at different knowledge scales and 
the creation of alternative scenarios. Its limitations include the difficulty in validating existing 
models, the high cost of obtaining some data, for instance, historical meteorological information, 
spatial variability and selection of input data, for example. There are many ways to evaluate the 
performance of a model and sometimes erroneous deductions are made, misunderstanding the use 
of this tool. The use of crop modeling is still incipient in Brazil compared to the others countries. 
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This study aimed to address some key concepts and mechanisms in crop modeling, in order to 
contribute and stimulate the research, still scarce in this area, and its diffusion. 
 
Index terms: modeling, computational language, sensitive analysis 

 
 

INTRODUÇÃO 
 
Aspectos gerais e principais aplicações da modelagem em agricultura 
 O uso de modelos na agricultura é datado desde os primeiros cultivos na história da 
humanidade. Naquele tempo era sabido que ao plantar determinada cultura em determinada época 
e modo, seu desenvolvimento ocorreria de maneira que a colheita ocorreria em outra época. Esse 
modelo mental foi sendo aprimorado pelos agricultores com o passar dos tempos, baseado nas 
suas próprias experiências. A utilização de modelos objetivando quantificar os efeitos das 
variáveis ambientais no crescimento e desenvolvimento das culturas vem ocorrendo há mais de 
270 anos. Quando Réaumur, em 1735, fez a associação entre temperatura e o desenvolvimento de 
culturas, ele estava propondo um dos modelos empíricos mais eficientes que se conhece em 
agrometeorologia, baseado no acúmulo de graus-dia. A partir da década de 50, trabalhos mais 
elaborados vieram formalizar o que seria o alicerce da modelagem em agricultura (ZADOCKS; 
RABBINGE, 1985), onde um dos trabalhos mais relevantes foi o desenvolvido pelo Professor C. 
T. de Wit, da Universidade de Wageningen - Holanda, em 1958, intitulado "Transpiration and 
crop yield”, seguido em 1968 pelo clássico trabalho "Photosynthesis of leaf canopies". Após tais 
publicações, observou-se um crescente interesse pela área de modelagem em diversos países do 
mundo, inclusive no Brasil. 
 Os diferentes modelos de culturas agrícolas, com maior ou menor nível de empirismo em 
função do conhecimento sobre os fenômenos estudados, normalmente consistem no balanço do 
carbono - que depende da interceptação e da utilização da luz - e de um balanço hídrico - que 
depende da demanda atmosférica e da utilização da água pelas plantas. Estes processos 
fisiológicos podem ser associados à absorção dos nutrientes e às perdas causadas por pragas, 
doenças e plantas daninhas. A agregação destes conhecimentos através de equações matemáticas 
resulta em modelos que podem simular o crescimento e a produção das culturas (PENNING de 
VRIES, 1982).  
 Em condições favoráveis ao crescimento, os processos fisiológicos e o rendimento 
‘potencial’ das culturas são determinados principalmente pelas características varietais e por 
variáveis climáticas, como temperatura, fotoperíodo e radiação. Esse fato torna importante a 
análise do crescimento e desenvolvimento da cultura em diferentes situações, pois significa que o 
potencial de rendimento das culturas difere entre locais e anos, e entre épocas no mesmo local 
(KROPFF et al., 1995; PEREIRA et a., 2002).  A quantificação do potencial produtivo em 
diferentes áreas indica aquelas mais apropriadas para a produção de determinada cultura, além de 
servir também para estimativa da produtividade ‘real’, considerando eventuais quebras de 
rendimentos (PEDRO Jr. et al., 1983; MARIN et al., 2000). Este raciocínio é a base do método da 
Zona Agroecológica (MZA), ou modelo de Doorenbos e Kassam (1994). 
 O crescimento e desenvolvimento das plantas dependem fundamentalmente dos processos 
de fotossíntese e respiração. A pesquisa da fotossíntese é refletida em sofisticados modelos, os 
quais existem para predizer o crescimento das plantas, dados da elevação solar, geometria das 
folhas, penetração da luz, taxa individual da fotossíntese, etc. No entanto, a maioria dos recursos 
e esforços tem sido despendida no estudo da fotossíntese, sendo a respiração considerada apenas 



3 
 

um processo de perda de carbono (PEREIRA; MACHADO, 1987). Coube a McCree (1970) e 
Thornley (1970), mostrar que esses dois processos são interligados e interdependentes, e que a 
respiração faz parte efetiva do processo de utilização e distribuição dos carboidratos 
fotossintetizados.  
 Um dos primeiros modelos propostos para a estimativa da produção de fotoassimilados 
em função da área foliar e ângulo de inserção das folhas, além de considerar outros elementos 
inerentes ao dossel da cultura, como velocidade do vento, CO2, radiação e transpiração, foi o 
SPAM, no qual posteriormente foi incluída uma equação considerando a atividade estomática 
(DUNCAN, 1975). O modelo ELCROS foi desenvolvido para simular o crescimento da planta de 
milho (WIT; GOUDRIAAN, 1978), assim como o modelo SIMAIZ (DUNCAN, 1975). 
Entretanto, todos são limitados, pois não levam em consideração todos os fatores e interações 
entre o ambiente e a planta, caso do modelo SIMAIZ, que considera que a produção de 
fotoassimilados seja função única das interações entre radiação, temperatura e área foliar.  
 Mais tarde, Andrade et al.(1991) propuseram que o rendimento da cultura é expresso pela 
interação da radiação incidente com a eficiência de interceptação da radiação incidente, a 
eficiência de conversão da radiação interceptada e a partição de fotoassimilados. Nesse caso, a 
radiação incidente pode aumentar segundo a latitude; entretanto, deve-se considerar a taxa de 
desenvolvimento por unidade de tempo térmico, uma vez que temperatura afeta o ciclo da planta 
(DOURADO NETO, 1999). 
 Diversos autores desenvolveram modelos que simulam o desenvolvimento da planta, o 
acúmulo de matéria seca nos seus diferentes órgãos e o índice de área foliar, em função de 
parâmetros fenológico e climatológico (KEULEN et al., 1982; KEULEN; WOLF, 1986; 
SPITTERS et al., 1986).  
 Em geral, estes modelos podem ser usados para investigar uma série de assuntos 
relacionados à produção vegetal. Eles servem para facilitar o entendimento quanto ao 
comportamento da cultura dentro de seu contexto ambiental, podendo ser usados em escalas 
regional e global, para prever ou explorar o potencial produtivo sob certas condições 
(ITTERSUM et al., 2003; BOUMAN et al, 1996), sendo, muitas vezes, utilizados como 
ferramenta de gerência e tomada decisória (MEINKE; HOCHMAN, 2000). Além disso, os 
modelos de simulação são utilizados para verificar teorias e testar hipóteses, melhorar o 
conhecimento sobre um determinado processo (MUNAKATA, 1995; BOOTE et al., 1996),  além 
de estimular uma integração interdisciplinar e descrever, de forma concisa, um grande número de 
observações isoladas. Por sua vez, estes modelos podem predizer o comportamento do sistema, 
em combinações e condições não experimentadas anteriormente. De maneira geral, a aplicações 
destes modelos é bastante ampla, e incluem desde zoneamento agroecológico a estudos sobre o 
efeito das mudanças ambientais ou sócio-econômicas na agricultura (BOUMAN et al., 1996).  
 No Brasil, apesar de alguns exemplos de sucesso, as técnicas de modelagem não estão 
sendo desenvolvidas, nem utilizadas em seu pleno potencial. Desenvolvimento e utilização de 
modelos são conceitos distintos. Para se formar uma massa crítica em modelagem e aproveitar 
todo o benefício didático e científico dos modelos é necessário que os mesmos sejam 
desenvolvidos, ou se já existem modelos similares em outros países, que sejam adaptados, 
levando-se em conta as condições brasileiras. Exemplos de adaptações de modelos desenvolvidos 
no exterior e adaptados às nossas condições podem ser consultados em CORRÊA (2008) e 
LORENÇONI (2010). 
 A construção de modelos simplificados é interessante para torná-los mais acessíveis ao 
público não especializado. Tais modelos podem ser feitos extraindo-se todos os detalhes 
excessivos do modelo complexo, usando-se análises de sensibilidade e pela seleção da variável 
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principal do sistema. Diferentes modelos simplificados podem ser construídos a partir de um 
mesmo modelo complexo, sendo que a diferença entre eles irá depender dos diferentes objetivos 
de sua aplicação. Um exemplo do acima exposto: nos anos 90, Spitters argumentou que um 
modelo de simulação de produtividade de cultura chamado SUCROS (Simple and Universal 
CROp growth Simulator), no qual a abordagem da fotossíntese era incluída, poderia ser 
simplificado, incorporando apenas os processos determinantes que mais afetam o crescimento das 
culturas. Esta foi a primeira abordagem de um modelo que, mais tarde, seria batizado como 
LINTUL (Light INTerception and UtiLization) (BOUMAN et al., 1996). Em Corrêa (2008), a 
rotina do modelo LINTUL-soja, originalmente na linguagem FORTRAN (‘FORmula 
TRANslation”, muito usada nas décadas de 80 e 90 principalmente na Europa, porém, pouco 
difundida no Brasil), foi replicada para a linguagem Visual Basic - desenvolvida pela Microsoft e 
popularmente difundida em nosso país. Dessa maneira, o modelo simplificado LINTUL pode ser 
usado por um maior número de usuários (difusão do conhecimento). 
 No atual cenário, os módulos de simulação dos processos componentes parecem ser 
aqueles que mais rapidamente podem ser incorporados e utilizados, como por exemplo, os que 
simulam o balanço hídrico para orientação do manejo da irrigação.  
 
Modelos e Modelagem 
 Diversos pesquisadores das mais variadas áreas desenvolvem seus estudos e acumulam 
conhecimento e informações passíveis de serem ampliadas – é a necessidade inerente do homem 
em compreender como a natureza e seus componentes funcionam. Por sua vez, para que os 
resultados dessas pesquisas sejam confiáveis, existe a necessidade da realização de experimentos 
- que envolve custo de instalação, manutenção e obtenção dos dados - além do tempo necessário 
para a condução dos mesmos. Em muitos casos, não existe a possibilidade de instalação de 
experimentos, exigindo-se que a tomada decisória seja rápida. Para contornar situações como 
estas, propõem-se a ‘descrição de um sistema real’, na escala do objetivo do estudo e com a 
interpretação dos fenômenos envolvidos correlacionada ao nível de exatidão obtida na sua 
descrição. Para que esta ‘simplificação’ seja possível, exige-se que exista um elevado 
conhecimento dos conceitos básicos de funcionamento do sistema em questão. 
 Sendo assim, conceitua-se como modelagem a ferramenta científica baseada na 
representação simplificada de um sistema que, na maioria dos casos, pode ser composta por um 
conjunto de símbolos e relações matemáticas logicamente ordenadas (modelos). Alguns 
protocolos computacionais empregam apenas ‘regras’ que modelam o sistema investigado, como 
por exemplo, modelos variacionais fuzzy (em inglês, incertos), autômatos celulares, algoritmos 
genéticos e redes neurais.  
 Basicamente, a modelagem tem como objetivos: (i) estabelecer ‘diagnósticos de 
funcionamento’ de um ou mais processos; (ii) identificar ‘carências científicas’ a serem 
exploradas. O uso de modelos permite obter um conhecimento integrado das suas partes - em 
diferentes escalas espaciais e temporais - estabelecendo diretrizes e definindo hipóteses 
assumidas sobre o sistema real.  
 Há diversas classificações propostas para diferenciar os modelos. Uma delas os divide em 
matemáticos e de simulação.  O primeiro caso refere-se a representações matemáticas de um 
fenômeno, podendo ser de três tipos: (i) empíricos; (ii) mecanísticos e (iii) estocásticos 
(PAUTIAN et al., 1992). Os modelos de simulação englobam um ou mais modelos matemáticos, 
representando fenômenos mais complexos.  
 Modelos empíricos são aqueles que se baseiam puramente em dados observados, ou seja, 
na interação quantitativa entre os elementos considerados no mesmo. Não há muito interesse em 
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explicar detalhadamente porque o sistema responde de tal forma. Nesse tipo de modelo utilizam-
se dados empíricos, variáveis ou constantes consagradas que fazem parte do conhecimento de 
determinada ciência. Quando o interesse é descrever primariamente a resposta de um sistema de 
forma geral, o método empírico pode ser utilizado satisfatoriamente. Normalmente, estes 
modelos fundamentam-se em relações derivadas a partir de análise de regressões e, quando 
gerado de uma série de dados longa, podem ser suficientemente exatos para serem usados em 
dadas situações. No entanto, devem ser usados com ressalva para extrapolações, em condições 
similares àquelas em que foram gerados. Apesar da ressalva de extrapolação sem ajustes para 
diferentes condições daquelas de sua origem, segundo Dourado Neto (1998a), um modelo obtido 
por análise de regressão, quando baseado no entendimento de processos de desenvolvimento de 
um sistema, por exemplo, pode ser mais valioso que um complexo modelo mecanístico, baseado 
somente no conhecimento de suas respostas. 
 Modelos mecanísticos são aqueles que têm sua estrutura baseada na descrição do processo 
que ocorre no sistema real considerado, ou seja, existe a tentativa de se considerar os princípios 
físicos, químicos e biológicos que ocorrem no sistema, tentando entender o sistema em termos 
dos mecanismos presentes. Tais modelos apresentam grandes dificuldades na obtenção dos dados 
necessários para o seu desenvolvimento; por outro lado, apresentam pouca restrição à 
extrapolação geográfica e espacial dos resultados, quando comparados ao modelo anterior. São os 
mais versáteis dentre os tipos de modelos matemáticos (PAUTIAN et al., 1992).  
 O modelo é estocástico quando baseado em uma ou mais variáveis de natureza randômica 
(LAW; KELTON, 1991), ou seja, se o estado do sistema for determinado pelo momento anterior, 
afetado por uma probabilidade devida ao acaso. São modelos em que o fator ‘probabilidade’ está 
presente (THORNLEY, 1976).  
 Os modelos de simulação permitem fazer simulações de longo prazo, sendo realizadas 
geralmente a um baixo custo. Conforme Addiscott (1993), eles podem ser divididos em: (i) 
determinísticos, em que um conjunto de eventos leva a um resultado único e definido e (ii) 
estocásticos, em que a incerteza é considerada na sua estrutura, ou seja, apresentam algum grau 
de probabilidade associado à sua resposta, característica comum dos modelos empíricos. Uma das 
características mais importantes da simulação é sua habilidade de modelar comportamentos ou 
variações randômicas (tempo de processos e taxas, por exemplo). Dizer que uma variável de um 
modelo é randômica não significa dizer que ela é indefinida nem sequer imprevisível mas, sim, 
que o fenômeno modelado tende a variar estatisticamente, sendo probabilisticamente  previsível. 
Portanto, modelos que não possuem natureza randômica - os determinísticos - possuem 
comportamento determinado, uma vez que os dados de entrada sejam definidos. Modelos de 
simulação determinísticos podem ser obtidos da mesma maneira que modelos estocásticos. A 
diferença básica está no método de análise a ser adotado para cada um dos modelos. Nos 
determinísticos, o resultado de uma única simulação fornece uma medida exata da performance 
do modelo. Para os estocásticos, várias interações são necessárias para que se possa obter um 
resultado médio que gere uma estimativa confiável da performance do modelo. 
 Para as situações onde as incertezas, exerçam pouca influência no resultado final, a 
aplicação de modelos determinísticos pode ser cabível e de boa aceitação, como por exemplo, na 
adubação de solos ‘homogêneos’, ou no dimensionamento de sistemas de irrigação. Porém, 
quando as variáveis de interesse podem apresentar-se extremamente variáveis quanto a seus 
valores como, por exemplo, a temperatura média de determinada localidade, o procedimento 
estocástico vem a contemplar as incertezas, fazendo possível que não só um único valor seja 
admitido como resposta final, mas sim, várias possibilidades – cada uma associada à determinada 



6 
 

probabilidade de ocorrência. Tais procedimentos são comumente aplicados via cadeia de Markov, 
análises espaço-temporais, e método de Monte Carlo. 
 Na realidade, a maioria dos modelos de simulação é uma mistura de empiricismo e 
mecanicidade. Mesmo os mais mecanísticos dos modelos usam empiricismo em algum nível 
hierárquico de sua estrutura (BOOTE et al., 1996).   
 Para entender o comportamento de determinado nível do sistema, muitas vezes é 
necessário compreender como este é influenciado pelo comportamento de um nível abaixo. 
Assim, um sistema aparentemente complexo pode ser desdobrado em níveis relativamente mais 
simples (JONES, 1986). Quando o conhecimento de determinado nível explicativo é 
suficientemente extensivo, tendo sido o modelo deste sistema criado com base nesse sólido 
conhecimento, pode não ser mais necessário testar esses modelos comparando-os com a realidade 
(de WIT, 1974). 
 Deve ser ressaltado, entretanto, que todos os modelos são abstrações. O grau de abstração 
permitido é um valor de um julgamento a ser feito no contexto dos objetivos. A chave para uma 
efetiva modelagem está no equilíbrio entre o realismo e a abstração na reprodução do sistema 
(SANTOS, 1986). Não existe, portanto, um modelo certo ou errado, mas sim modelos com 
diversos graus de aplicação para diversas circunstâncias. Não existe também um modelo 
universal que forneça uma solução para todos os problemas. Contudo, os modelos devem 
continuar a ser construídos e adaptados às diversas situações particulares. Os profissionais que 
trabalham com essas ferramentas devem definir claramente seus objetivos antes de pensar em 
construí-los, enquanto que os usuários devem escolher aqueles que melhor resolvam suas 
necessidades específicas (THORNLEY; JOHNSON,1990; DOURADO et al., 1998a). 
 
Componentes do processo de modelagem e a avaliação do modelo 
 Sumariamente, ‘modelo matemático’ é definido um conjunto de relações matemáticas que 
descrevem as mudanças nas variáveis de estado como resultado dos diferentes processos que 
ocorrem nesse sistema (de WIT, 1978; JONES et al., 1987). Sistema, por sua vez, é a coleção de 
componentes e suas relações que são agrupadas para estudar uma parte do mundo real. Esta 
seleção depende dos objetivos do estudo e é uma visão simplificada da realidade. 
 Entende-se como variável de estado as ‘quantidades’ que descrevem as condições dos 
componentes no sistema, e podem mudar com o tempo à medida que os componentes do sistema 
interagem com o meio. Se as variáveis de estado mudam no tempo, os modelos são dinâmicos. 
Como exemplo de variáveis de estado, podemos citar a quantidade total de biomassa de 
determinada cultura. É importante se ressaltar que as variáveis de estado são, em grande parte dos 
modelos de simulação de crescimento e desenvolvimento de culturas, a característica de interesse 
do modelador (de WIT, 1978; JONES et al., 1987). 
 Entradas (Inputs) são os fatores do meio ambiente que influenciam o comportamento do 
sistema, mas que não são influenciados pelo mesmo, como por exemplo, as variáveis 
meteorológicas. Inputs também se referem a variáveis moduladoras, que agem sobre os fluxos e 
variáveis de estado. Se um sistema não tem inputs, ele não é afetado pelo ambiente e é 
denominado um sistema fechado.  Inputs podem variar com o tempo. Saídas (Outputs) são os 
resultados do modelo que são de interesse do modelador. 
 Os parâmetros são características dos componentes do modelo que geralmente são 
constantes através do tempo simulado. A distinção entre parâmetros e inputs não é sempre clara. 
Geralmente, inputs são diretamente dependentes do tempo, enquanto parâmetros são constantes 
ou dependem do estado do sistema, mas não necessariamente do tempo. Por exemplo, os 
parâmetros podem definir a resposta funcional da fotossíntese à luz, a resistência do solo à 

https://www.researchgate.net/publication/239848119_Simulation_of_Ecological_Processes?el=1_x_8&enrichId=rgreq-0677146f-2b4f-4573-96c9-a2b162ed0e4d&enrichSource=Y292ZXJQYWdlOzI1OTk3MTMyMDtBUzoxMDM3ODkwNzU4OTQyNzJAMTQwMTc1NjY1MjUwNg==
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densidade de fluxo de água, a resposta funcional da variação temporal do índice de área foliar e a 
perda de água pela planta através do processo evapotranspiratório. (JONES et al., 1987). 
 As inter-relações entre os componentes e o sistema, e algumas vezes entre variáveis de 
estado no sistema, ocorrem como resultado de vários processos. Por exemplo, a biomassa de uma 
cultura (variável de estado) muda como resultado dos processos de fotossíntese e respiração; o 
conteúdo resultado da chuva ou da evapotranspiração e drenagem.  
 Fluxos, por sua vez, representam as entradas e saídas dos compartimentos das variáveis de 
estado. Os fluxos, que algumas vezes são os próprios processos, são sempre expressos na unidade 
de tempo. 
 Há muitas ferramentas disponíveis para facilitar a aplicação de modelos e simulações de 
sistemas contínuos. Em particular, os símbolos têm sido definidos para expressar em diagramas 
os componentes e os processos dos sistemas (inputs, outputs, variáveis de estado, limites do 
sistema e inter relações entre eles, por exemplo). Esses procedimentos são úteis para desenvolver 
um modelo matemático do sistema. Além disso, tais diagramas são fundamentais para o 
profissional comunicar a essência do modelo com outras pessoas. 
 O procedimento de modelagem é iniciado por intermédio do entendimento correto dos 
objetivos do modelo a ser construído, que devem ser claros e bem definidos, baseados no 
conhecimento do problema a ser resolvido. Caso eles sejam amplos, devem ser subdivididos em 
ordem de prioridade. Os objetivos devem ser suficientemente completos, para que a partir deles, 
possam ser determinados os parâmetros, inputs, o conjunto de equações a ser utilizada, a 
metodologia aplicada e as características dos resultados que serão obtidos. 
 No processo dinâmico de construção do programa computacional, em que as equações são 
transformadas em linguagem computacional - programas de computadores especiais 
desenvolvidas para apresentar as funções de rotina que são características da maioria dos estudos 
de simulação -, é aconselhável que os resultados dos cálculos apresentados pelo computador 
sejam comparados com outros resultados já existentes na literatura, para evitar que os erros não 
sejam encontrados, devido à complexidade e da magnitude do programa.  
 Os modelos devem ser avaliados de acordo com os objetivos inicialmente propostos. Há 
várias maneiras de se avaliar o desempenho de um modelo. Uma delas é a análise sensitiva, ou de 
sensibilidade, que consiste em avaliar os parâmetros ou entradas do modelo, considerando sua 
importância relativa para os resultados da simulação. Esta análise também fornece um 
mecanismo para testar a simulação nos extremos, e usando os valores extremos dos parâmetros 
vão rigorosamente testar o modelo em termos de estabilidade e lógica matemática. A análise de 
sensibilidade se inicia elegendo-se as principais saídas (resultados, outputs) do modelo, e se 
estabelece uma condição normal do modelo, com as melhores estimativas de cada parâmetro e 
entradas. Tomam-se, então, os parâmetros ou entradas a serem avaliadas quanto ao seu efeito no 
modelo (sensibilidade do modelo a eles). Para cada uma, o valor é alterado, dentro de valores 
reais de sua amplitude, e se roda o modelo (simulações) mantendo-se constantes as demais 
condições. Uma comparação entre mudanças nos valores dos parâmetros e os resultados, fornece 
uma indicação da importância relativa da variável.  
 Outra maneira de se avaliar os modelos é através de sua precisão, definida em termos de 
três estágios de sua implementação: (i) verificação, (ii) calibração e (iii) validação.  
 Verificação é o processo pelo qual a lógica de programação é comparada com as intenções 
do modelador, ou seja, é verificado se o programa executa precisamente o que o modelador 
propôs. 
 Calibração refere-se aos ajustes - dentro de uma amplitude conhecida - feitos para os 
parâmetros do modelo para dar a comparação ‘mais precisa’ entre os resultados simulados e os 
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resultados observados a campo. Diz-se que o modelo é mais ‘preciso’ quando a simulação se 
aproxima mais dos dados observados. O uso indiscriminado da calibração torna o modelo de 
difícil extrapolação e pode descaracterizar parte do seu mecanismo. Além do mais, a calibração 
excessiva pode ocultar falhas que seriam importantes se conhecer. 
 O estádio de ‘validação’ está relacionado com o estabelecimento da similaridade das 
respostas do modelo, pela comparação das mesmas com um conjunto de observações 
independentes. Esta etapa muitas vezes não é possível pela complexidade da modelagem.  
 Segundo Costa (1997), a avaliação de modelos deve passar - e normalmente passa - por 
duas avaliações distintas: uma subjetiva, que considera critérios como utilidade, simplicidade, 
elegância, e economia, principalmente; e outra objetiva, que utiliza critérios pré-definidos para se 
avaliar o modelo. É comum se observar na literatura científica, como parte do critério objetivo, o 
termo ‘validação do modelo’. Nesse sentido é importante ressaltar que pelas definições 
apresentadas e discutidas acima, o modelo é uma teoria científica sobre o funcionamento de um 
certo sistema. Dessa forma, há que se considerar que uma teoria científica somente pode ser 
falsificada, nunca validada. Assim sendo, não é recomendável utilizar o termo validação, e passar 
a utilizar o termo correto para tais avaliações objetivas: teste do modelo. 
 Outro método bastante usado para a avaliação dos modelos é a comparação dos dados reais 
com os dados simulados. No entanto, é necessário ressaltar que tal teste é somente parte da 
avaliação total do modelo, e quando necessária sua utilização, deve ser baseada na prudência, 
evitando erros de interpretação. Ainda em relação aos dados observados e simulados, um dos 
métodos mais utilizados recentemente é o da análise de suas diferenças. Tal procedimento 
apresenta uma série de vantagens em relação ao convencionalmente utilizado, ou seja, a simples 
comparação de dados reais com dados simulados. Para que tal procedimento tenha sentido são 
necessárias algumas considerações, tais como, quais variáveis serão testadas e quais os níveis de 
precisão aceitáveis para essas variáveis (COSTA, 1997).  
 Outro aspecto importante a ser considerado nos testes dos modelos é que tais testes devem 
ser feitos para longos períodos de tempo e nas mais diversas condições ambientais. 
 
Vantagens e limitações dos modelos  
 As vantagens da utilização de modelos matemáticos, segundo Pessoa et al. (1997), 
implicam em um crescente aumento no uso, proposição e validação dos modelos, sendo elas: 
baixo custo, velocidade, completa informação, criação de cenários e proposição de cenários 
ideais.  
 A instalação, condução, avaliação e análise dos resultados exigem infra-estrutura e mão-
de-obra especializada, que fazem com que a investigação experimental seja, muitas vezes, maior 
que a execução de um programa computacional. É importante lembrar que a aquisição de 
computadores está se tornando mais acessível a cada dia, mesmo em classes sociais que antes não 
tinham acesso a essa ferramenta. Durante a vida útil do equipamento, inúmeras simulações 
podem ser executadas, ao passo que no campo, em uma área determinada, só é possível executar 
um experimento por vez.  
 À medida que o problema adquire complexidade e aumenta de proporções, a utilização da 
modelagem adquire maior importância. Apesar de possuir um custo maior, a condução de 
experimentos não pode ser descartada. A modelagem deve auxiliar na decisão de quais os rumos 
a experimentação a campo deve seguir, como por exemplo, fazendo com que os recursos sejam 
melhores alocados e, assim, a qualidade das informações sejam mais relevantes à pesquisa. 
 Quanto à velocidade, a execução de um experimento que avalie, por exemplo, a absorção 
de uma quantidade de nitrogênio pelas raízes e a sua influência sobre a produtividade pode levar 
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até meses para que seja completado. Porém, a simulação desse processo por intermédio de 
parâmetros de entrada e equações pode levar poucos segundos. Em oito horas de trabalho em um 
campo experimental pode-se fazer a aplicação de nitrogênio e capina, por exemplo, enquanto que 
com este mesmo tempo, é possível simular diversas condições e obter os mais diversos 
resultados. 
 Com a execução de um experimento, o número de informações é relativamente baixo, 
pois se restringe ao número de parâmetros avaliados. No entanto, com a simulação, possuímos os 
valores dos parâmetros de entrada e cada um dos valores calculados no decorrer do processo, até 
a obtenção do resultado final. Com a obtenção desse relatório é possível, então, visualizar todo o 
sistema, evidenciando pontos conflitantes e importantes na condução de novas investigações 
experimentais.  
 A simulação de condições diversas já é bem conhecida. Com ela, existe a possibilidade de 
criar cenários que ainda não são conhecidos, ou seja, cenários alternativos - muitos deles ainda 
não explorados em experimentos reais. A construção de condições ideais também é possível, o 
que em condições experimentais seria muito difícil de acontecer, mesmos que os experimentos 
sejam cuidadosamente executados. 
 No entanto, é evidente que toda técnica - além das vantagens - apresente suas limitações. 
Uma boa aplicação de qualquer técnica exige que, além do domínio desta, haja pleno 
conhecimento de suas limitações. 
 Uma das limitações é a validação dos modelos e simuladores já existentes. Esse processo, 
às vezes, é demorado e requer conhecimento amplo do problema, além da obtenção dos dados em 
campo. Entretanto, sem a execução dessa etapa, todo resultado obtido por simulação poderá ser 
seriamente comprometido, repercutindo na obtenção de tendências equivocadas (PESSOA et al., 
1997). 
 Quando o problema em estudo possuir mais de uma solução, fica difícil determinar qual 
delas seria a mais conveniente. Outro aspecto é com relação à confiabilidade e exatidão do 
modelo empregado. Somente por intermédio de uma seleção das bases de dados usadas para o 
desenvolvimento do modelo, ou em sua aplicação posterior, pode-se minimizar o problema 
(DOURADO NETO et al., 1998b). De que forma os dados referentes às variáveis foram 
coletadas? Qual a confiabilidade desses dados? Um modelo é tão preciso e possui confiabilidade 
de acordo com a base de dados que utiliza em seu desenvolvimento influenciando diretamente a 
simulação.  
 Boote et al. (1996) citam algumas limitações para a utilização da modelagem, como o 
custo de obtenção dos dados (por exemplo, fotos de satélites, dados provenientes de 
instrumentação especializada), a variabilidade espacial (em aplicações na experimentação de 
campo, a variabilidade do solo é muito grande de um local para o outro, causando diferentes 
produtividades de grãos e esta área é tratada como única), a técnica para o entendimento de 
alguns dados de entrada, a variabilidade temporal e a qualidade dos dados (deficiência na 
calibração dos sensores).  
 A eficiência do processo de modelagem depende do conhecimento do modelador que vai 
desenvolver o modelo. As áreas que dão suporte a modelagem vão depender, sobre tudo, de qual 
o objetivo da modelagem. Algumas áreas do conhecimento na modelagem em agricultura são 
fundamentais, como por exemplo, agricultura, fisiologia, matemática, estatística, meteorologia, 
manejo cultural, ecologia, climatologia e lógica de programação, dentre outras. Dessa forma, 
existe a necessidade de equipes ‘multidisciplinares’ para o desenvolvimento dos modelos e, com 
isso, a sua ampliação de utilização.  
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 Costa (1997) ressalta que o desenvolvimento e a aplicação de modelos de simulação, em 
conjunto com a experimentação convencional em maior escala em nosso país, é um desafio que 
devemos seguir e que, sem dúvidas, tornará as atividades científicas mais eficientes. 

 
CONCLUSÕES 

 
 O desenvolvimento e a aplicação da modelagem em agricultura é uma valiosa ferramenta 
que pode - e deve - servir para a orientação de pesquisas, gestão de tecnologia e até decisões 
políticas. Seu uso no Brasil, apesar de ainda incipiente, tem aumentado nos últimos anos, muito 
embora em função do maior acesso de usuários a computadores e programas computacionais, 
mas também devido à melhoria de técnicas de modelagem e da maior capacidade dos 
computadores na realização de cálculos. 
 É importante que o meio acadêmico faça bom uso desta ferramenta, seja na condução de 
estudos hipotéticos, avaliando e comparando os resultados obtidos com suas próprias 
experiências, mas também na difusão deste conhecimento em sala de aula, na formação de massa 
crítica, e em eventos voltados à difusão da informação. 
 O conhecimento ‘interdisciplinar’ possibilita a realização de simulações mais acuradas da 
dinâmica do crescimento de culturas e de sistemas agrícolas, mas para que de fato haja esta 
agregação de conhecimento, muitos modelos devem ser simplificados em submodelos. Esta 
simplificação de modelos é importante para a melhoria no entendimento dos processos e de suas 
respostas, mas deve-se estar atento às suas limitações. 
 Ressalta-se, aqui, que a proposta do uso de modelos não substitui a experimentação 
convencional, nem tampouco se deseja obter, através do modelo, uma única e exclusiva resposta 
para questões de natureza complexa e mutável. O que se pretende sim é tornar a atividade 
científica mais eficiente e, por conseguinte, fazer com que os resultados e descobertas oriundos 
desses trabalhos estejam disponíveis aos segmentos de interesse, de maneira mais ágil e menos 
onerosa. 
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