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STOCHASTIC MODEL FOR SIMULATING MAIZE YIELD 

E. R. Detomini,  D. Dourado Neto,  J. A. Frizzone,  A. Doherty,  H. Meinke,  
K. Reichardt,  C. T. S. Dias,  M. G. Figueiredo 

ABSTRACT. Maize is one of the most important crops in the world. The products generated from this crop are largely used 
in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these 
reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in 
which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be 
investigated with ecophysiological crop models, which can be organized according to different philosophies and 
structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and 
productivity under different conditions of water supply while considering the uncertainties of daily climate data. 
Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the 
philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in 
terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate 
water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal 
distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain 
productivity, i.e., it was found that 10,604 kg ha-1 is the most likely grain productivity, very similar to the productivity 
simulated by the deterministic model and for the real conditions based on a field experiment. 

Keywords. Bivariate normal distribution, Corn, Crop modeling, Depleted productivity, Grain productivity, Triangular 
distribution. 

he advent of crop models implemented on 
computers can be traced back to groundbreaking 
work in the 1950s, such as the study by Monsi 
and Saeki (1953) on light interception and de 

Wit’s (1958) classic “Transpiration and Crop Yields” that 
also draws on some of Penman’s early work (Penman, 
1948). These and similar publications constructed the 
framework for the emerging formalism of system analysis 
(Zadoks and Rabbinge, 1985). Phrasing physiological 
processes in mathematical terms and collating them to 
meteorological variables led to today’s proliferation of 
computer simulation models that have been developed and 
used in agriculture. 

Simulation models of agricultural plants, crops, and 
cropping systems are becoming commonplace. 
Traditionally, they have been used as knowledge 
depositories by scientists to describe an area of interest. 
Once available, interest quickly shifted from curiosity 
about the underlying principles to the use of models either 
in a predictive capacity (e.g., to develop scenarios or to 
support decisions) or in an explanatory capacity to 
investigate interactions between processes studied in an 
isolated manner. This manner of studying models initiated a 
debate about the appropriateness of mathematically 
describing biological relationships and the level of details 
needed to achieve a “good” model. Defining this goodness, 
by clearly stating the objectives of every modeling endeavor, 
could make much of that debate redundant (Meinke, 1996). 

Arguments about the right way to build crop models 
have largely concentrated on the level of empiricism 
acceptable when representing such sequences 
mathematically. Passioura (1996) asserted that the purpose 
of scientific models is to improve our understanding of 
physiology and environmental interactions, while 
engineering models utilize robust, empirical relationships 
to obtain results. This separation would constitute a 
traditional reductionist paradigm because it would reinforce 
the disassociation of scientific and engineering modeling 
rather than allow for a synthesis of the different 
approaches. Rather than separating engineering from 
science and alienating many professionals in the process, it 
might be more useful to view this differentiation as the 
pragmatic end of a continuous quest for knowledge and a 
solution to the problems. Used constructively, this polarity 
should advance future model developments (Meinke, 1996). 
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Thus, models are simplified representations of a system 
that is a part of the real world and contains related compo-
nents inside predefined boundaries. This system can be af-
fected by the surroundings, but the surroundings cannot af-
fect it significantly. The definition of scale is very 
important to ensure that the conclusions of a system will of-
ten be based on the performance of the low-hierarchy com-
ponents. The main roles of models, in our understanding, 
are to: (1) organize information; (2) highlight gaps in the 
various research areas of knowledge; (3) visualize a robust 
idea about the potentialities, limitations, or eventually 
magnitudes of a given variable of interest; and (4) simulate 
impossible and difficult scenarios (e.g., CO2 injection on 
earth, insect biology studies). Moreover, the existence of a 
coincidence does not necessarily imply a cause-effect rela-
tionship. 

The applicability of crop models emerges when one 
needs to optimize the use of resources such as land and wa-
ter under given boundary conditions. For example, if an 
economist intends to calculate the highest possible profita-
bility under certain resource constraints (i.e., land and wa-
ter) over the course of an agricultural project, the analysis 
regarding how much water and land area could be available 
for cropping during a couple of years will depend on re-
fined and well-established crop models. This analysis cer-
tainly justifies modeling research efforts meant to improve 
simulation outputs. It is convenient, for instance, to classify 
models only as deterministic and stochastic, regardless of 
other non-straightforward distinctions. Although determin-
istic models can output a solution through simple mathe-
matical implementation, they are limited because they pro-
vide only a single outcome. In contrast, stochastic models, 
which use statistical methods or stochastic components, 
provide a range of results, with each result associated with 
its corresponding probability of occurrence. 

Maize is one of the most important crops in the world. 
The products generated from this crop are largely used in 
the starch industry, the animal and human nutrition sector, 
and biomass energy production and refineries. For these 
reasons, there is frequently a significant interest in knowing 
the potential grain yield of maize genotypes in relation to 
the environment in which they will be subjected for crop-
ping, as productivity directly affects agribusiness or farm 
profitability. The main objective of this work is to concep-
tualize a stochastic model for predicting maize grain yield 
and productivity under different conditions of water supply 
while considering the uncertainties of daily climate data. A 
deterministic model and some outputs are also analyzed to 
evaluate the time course of the above-ground dry matter 
growth of maize. 

MATERIALS A�D METHODS 
MODEL DESCRIPTIO� A�D A  

BRIEF PARAMETERIZATIO� 

The proposed model includes concepts from both gener-
ic (i.e., the family of Dutch models) and maize-specific 
(i.e., CERES-Maize; Jones and Kiniry, 1986) approaches. 

Our maize model includes assimilation processes and de-
pends on few empirical input parameters; it does not pre-
dict any crop phenology except the physiological maturity 
point as a function of thermal time. Dobermann et al. 
(2003) provided a good comparison between each family of 
models by pointing out a number of advantages and disad-
vantages of each family. 

From dimensional analysis, Detomini (2008) derived the 
following mechanistic equation for estimating the potential 
above-ground dry matter (DM) on a daily basis: 

 
0.1498 IWpa GP RUE= ⋅ ⋅λ ⋅

 (1) 

where Wpa is the potential above-ground dry matter (kg 
DM ha-1 d-1) estimated for a given day, GP is the gross 
photosynthesis rate (kg CH2O ha-1 d-1), λI is the fraction 
of solar radiation intercepted by the canopy, and RUE is 
the radiation use efficiency (g above-ground dry matter 
MJ-1 intercepted photosynthetically active radiation). 

The GP function was also deducted by collating 
Clapeyron’s law with dimensional analysis according to 
Detomini (2008): 

 

36.5854

273

GAR LAI H P
GP

T

⋅ ⋅ ⋅ ⋅
=

+  (2) 

where GAR is the gross assimilation rate (µL CO2 cm-2 
leaf area h-1), LAI is the leaf area index, H is the day 
length (h d-1), P is the atmospheric pressure (atm) that re-
lies on altitude (Alt, m), and T is the daily average air 
temperature (°C). Clapeyron’s law is generally used to 
convert the volume of a given substance into its corre-
sponding mass, leading to a justification of GAR units in a 
volume basis. Substituting equation 2 into equation 1 
yields: 

 
5.48

273 I
GAR LAI H P

Wpa RUE
T

⋅ ⋅ ⋅
= λ

+  (3) 

Bouger-Lambert’s law states that photosynthetically ac-
tive radiation transmitted (PARt, MJ m-2 d-1) vertically 
through a canopy can be derived from Beer’s law (Monsi 
and Saeki, 1953): 

 
( )0

k LAI
tPAR PAR e

− ⋅=
 (4) 

where PAR0 refers to the incident photosynthetically ac-
tive radiation flow (MJ m-2 d-1) on top of the canopy, and 
k is the light extinction coefficient. The ratio PARt/PAR0 
defines transmittance (τ) so that the complementary frac-
tion (1 – τ) defines the intercepted fraction (λI). For prac-
tical purposes, λI could also be understood as a canopy 
covering fraction if canopy leaves are randomly oriented 
and spread (Loomis and Connor, 1992, p. 274). 

The basic difference between Bouger-Lambert’s law and 
Beer’s law is that the latter assumes a homogeneous mean, 
which does not occur in plant populations (Loomis and 
Connor, 1992, p. 36). Thus, k should not be constant 
through either the canopy profile or the crop cycle. The 
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light extinction coefficient rapidly decreases as LAI values 
increase during the initial stages of crop development, but it 
is likely to assume a constant value if the canopy closes fast 
(i.e., under irrigated field conditions). Because of this, the in-
itial variations of k can be neglected for crop model purposes 
in non-limiting conditions of water (Meinke, 1996). 

It is important to highlight that equation 3 explains the 
daily above-ground dry matter as a function of plant varia-
bles, such as RUE, k (implicit, see eq. 4), GAR, and LAI, 
and as a function of seasonal and climate variables, such as 
day length (H), atmospheric pressure (P), temperature (T), 
and absorbable radiation flow. This latter variable can be 
explicitly stated by expressing GAR (eq. 7) as a function of 
equation 5, which relies on both air temperature and solar 
radiation flow (implicit, see eq. 6). By analyzing data from 
the graphs shown by Heemst (1986) for C4 plants, 
Detomini (2008) presented an empirical generic function 
for describing the potential gross assimilation rate (GARp, 
µL CO2 cm-2 leaf area h-1) under controlled conditions: 

 

( )
( ) ( )

2 3
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22 3
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ln

1 ln ln

p

ab ab ab

ab ab ab

GAR

A A R A R A R A T
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=

+ + + +

 + + + + +    (5) 

where T is the air temperature (0 < T < 40°C), and Rab is 
the absorbable photosynthetically active radiation flow 
(0 < Rab < 0.35 cal cm-2 leaf area min-1). The empirical, 
non-user-defined parameters are: A0 = 1.566792, A1 = 
53515909, A2 = -221.805971, A3 = 310.191491, A4 = 
-0.491961, A5 = -0.190506, A6 = 0.373910, A7 = 
-0.088166, A8 = -0.554728, and A9 = 0.080398. 

In fact, the absorbable photosynthetically active radia-
tion flow was derived from a dimensional analysis by 
Detomini (2008) as a function of solar radiation flow (Rg, 
MJ m-2 d-1) and day length (H, h d-1) with some corrections: 

 
( )0.3987 1  ab PAR ab r

Rg
R

H
= λ λ −λ

 (6) 

According to Sinclair and Muchow (1999), representa-
tive values for λPAR and λab would be 0.5 (MJ 
photosynthetically active radiation MJ-1 incident solar radi-
ation) and 0.85 (MJ absorbable radiation MJ-1 
photosynthetically active radiation), respectively. 
Oguntunde and van de Giesen (2004) suggested a value of 
λr = 0.23 (MJ soil-plant reflected radiation MJ-1 incident 
solar radiation) for maize crop albedo. 

GARp is corrected by cloudiness effects according to:  

 
( )14ub Adc 4ub pGAR F R F GAR = + −   (7) 

where RAdc, specific to genotype, is the relationship be-
tween gross assimilation rates under a clear sky and gross 
assimilation rates under an overcast sky; and F4ub, specif-
ic to environment, is a cloudiness factor responsible for 
correcting the theoretical potential gross assimilation rate. 
The magnitude of the former was simulated to be around 
0.2626 (Detomini, 2008), whereas the latter might be di-
rectly obtained if insolation data are available or, if not, 

estimated by implying that radiation flow during strongly 
overcast days accounts for 20% of the flow on very clear 
days, according to: 

 
( )

1.25 14ub
AP AP T

Rg
F

a b R

 
= −  +   (8) 

where aAP and bAP are the Angström-Prescott coefficients, 
and RT is the estimated radiation incident on top of the 
atmosphere once the Earth’s eccentricity (DRST

2) and 
sunset hour angle (Ahn, degrees) are calculated: 

 
( )

237.6 sin sin
180 180

cos cos sin
180 180

TR DRST Ahn

Ahn

 π π   
= ⋅ Φ ζ    

   

π π   
+ Φ ζ    
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DRST DOY

π 
= +  

   (10) 

 24

H
Ahn

π
=

 (11) 

Note that equation 7 turns the generalized equation (eq. 
5) into a specific condition by collating information from 
the plant (RAdc), the climate (Rg), and the local (aAP, bAP, 
and RT) conditions for a given day of the year (DOY). The 
resulting angle between the imaginary plane of the equator 
and the imaginary line that links earth to the sun defines the 
solar declination (ζ, degrees) and relies on DOY: 

 
( )2

23.45sin 80
365

DOY
π 

ζ = −    (12) 

Thus, the length of a given day might be obtained as: 

 

24
arccos tan tan

180 180
H

 π π   
= − ζ −Φ    π       (13) 

where Φ refers to the latitude (decimal values) of the 
place of interest. Negative values of Φ are conventionally 
set for locations in the southern hemisphere. 

Because plant populations depend on both plant density 
of sowing (Dsow, plants m-1) and spacing (Se, m), these 
measurements are required for defining the leaf area index 
(LAI) in addition to the leaf area (LA, cm2 plant-1). At a 
farm-level view: 

 

410 sow

e

D
LAI LA

S

−=
 (14) 

Several models have been proposed to approach plant 
leaf area. For example, Dwyer and Stewart (1986) intro-
duced a bell-shaped function for estimating a single maize 
leaf as a function of the number of fully expanded leaves. 
This model was remarkable because it revealed many 
meaningful parameters, such as skewness, breadth, and the 
largest area and position of a single leaf (Valentinuz and 
Tollenar, 2006). However, there is still some empiricism for 
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extrapolating this model for the whole plant because it re-
quires empirical linear fittings for predicting the largest ar-
ea and leaf position, in addition to the eventual leaf number. 
We suggest using a closed empirical Gauss model, which is 
somewhat similar to the mechanistic model presented by 
Yang and Alley (2005). The functional form of our Gauss 
model is: 

 ( )

2

2

3

0.5

1e

Dr

LA Dr

 −γ
−  

γ = γ
 (15) 

where Dr is the relative crop development, and γ1, γ2, and 
γ3 are the empirical parameters. 

The first parameter (γ1) of equation 15 is biologically 
meaningful because it represents the maximum value of the 
entire plant leaf area (LAmax), equal to 8654.91 cm2 in a 
model where Dr = γ2 = 0.5758 (Detomini, 2008). The 
meaning of the third parameter (γ3) is not well established, 
although it approximately a quarter of the entire Dr (γ3 = 
0.2473). Instead of considering time for crop development 
duration, this parameter was considered on a dimensionless 
basis (i.e., Dr) to allow better generalization for future 
comparisons with data obtained from other studies and ex-
periments. 

The relative crop development defines the cumulative 
thermal time (CTTj, °C d) on the jth day after emergence in 
relation to the cumulative thermal time at a physiological 
maturity point (CTTmpp, °C d), consistent with the following 
approach: 

 

j
j

mpp

CTT
Dr

CTT
=

 (16) 

The value of CTTmpp was found as 1392.82°C d from 
field experimental data (Detomini et al., 2008). However, 
the variable is user-defined in the model and varies accord-
ing to maize genotype. The CTT is the sum of single daily 
thermal times (TTj, °C): 

 1

n

j j

j

CTT TT

=

=∑
 (17) 

If the relative development rate is well represented by a 
non-linear function but has a linear relationship with TT, 
this variable can also be described by a non-linear function. 
After reviewing “degree-days” concepts, Bonhomme 
(2000) explained the limitations of traditional degree-day 
calculation methods and suggested a beta function to calcu-
late TT, with upper (TDmax, °C), lower (TDmin, °C), and op-
timal (TDop, °C) temperatures for development. First pro-
posed by Yin et al. (1995), the beta function is assumed as 
the best option to calculate thermal times because it is 
based on relatively flexible mathematical laws and has few 
parameters, all physically and biologically meaningful, ac-
cording to: 

  

min

maxmax min
max

max min

op

op

TD TD

TD TD

op op

TT

TD T T TD
TT

TD TD TD TD

−

−

=

  − −
  
  − −    (18) 

Assuming user-defined values of TTmax, TDmax, TDop, 
and TDmin equal to 25, 44, 35, and 0, respectively, the func-
tion that particularly describes thermal time as a function of 
air temperature will only depend on daily air temperature 
(T, °C), for example: 

 
3.890.0793(44 )TT T T= −

 (19) 

A helpful approach to establishing a relationship be-
tween water and yield productivity was proposed by 
Doorenbos and Kassam (1979): 

 1

1 1
n

ii

Wa WUa
ky

W WU=

  
= − −  

  
∏

 (20) 

The ky values for most crops are derived under the as-
sumption that the relationship between relative yield 
(Wa/W) and relative water use (WUa/WU) is linear and is 
valid for water deficits up to about 50%, or (1 – WUa/WU) 
= 0.5. The values of ky are based on an analysis of experi-
mental field data covering a wide range of growing condi-
tions. The experimental results used represent high-
producing crop varieties, well adapted to the growing envi-
ronment and grown under a high level of crop management. 
The ratio WUa/WU may either occur continuously 
throughout the entire growth period of the crop, or it may 
occur during any one of the individual growth periods (i.e., 
i = 1, 2, …, n). Analysis of the available experimental field 
data in terms of the more precisely defined stress-day and 
drought indices proved difficult. On the other hand, if a 
simulation process is modeled on a one-day scale, the orig-
inal production model of Doorenbos and Kassam (1979) 
collapses because the day-to-day multiplication of a deci-
mal factor would quickly deplete the production. To solve 
this problem, our model assumes a continuous and equally 
distributed day-to-day water deficit to calculate the produc-
tivity depletion, as will be shown later, so that a value of 
1.25 might be adopted for maize hybrids in this situation. 
Thus: 

 

1 1.25 1
Wpad ETa

Wpa ET

 − = − 
   (21) 

where Wpad is the depleted, above-ground dry matter 
productivity rate (kg ha-1 d-1), ETa is the actual evapotran-
spiration (mm d-1), and ET is the potential evapotranspira-
tion (mm d-1). 

The relationship ETa/ET could be interpreted as an index 
of water stress under which a plant population develops 
(Laar et al., 1992, p. 40), which is equal to one if there is no 
deficit and zero if the deficit is severe. In reality, this rela-
tionship indicates the water supply level (Sw) because its 
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opposite (i.e., 1 – ETa/ET) would be the level of stress. If 
Wpad is explicit and Sw is inserted into equation 21: 

 
( )1 1.25 1Wpad Wpa Sw = − −   (22) 

The term inside the brackets is, therefore, a depletion 
factor (Fd; kg potential above-ground dry matter productiv-
ity rate kg-1 depleted above-ground dry matter productivity 
rate). By inserting equation 3 into equation 22, it is possible 
to find a simple model to predict depleted above-ground 
dry matter productivity rates on a daily basis as: 

 
( )5.48 1 1.25 1

273
I

Wpad

GAR LAI H P
RUE Sw

T

=

⋅ ⋅ ⋅
 λ − − +  (23) 

In agreement with the approach of Verdoodt et al. 
(2004), the summation of daily dry matter (eq. 23) until 
reaching the economically useful stage of a crop, which in 
this model is the maturity point, results in the final cumu-
lated above-ground dry matter productivity that should ac-
count for harvest index (HI; kg grain kg-1 depleted above-
ground dry matter) in the calculation for the grain produc-
tivity simulation (Wg; kg grain ha-1): 

 0

n

j

j

Wg HI Wpad

=

= ∑
 (24) 

According to equation 24, there is no plant weight loss. 
This weight stability might be justified because the daily 
calculations of Wpa already account for the efficiency of 
radiation use (RUE), and the senescing losses are accounted 
for in the LAI equation. Equation 24 is the final determinis-
tic model used to predict maize grain productivity (on a dry 

basis) under specific limited and non-limited water supply, 
climate, population, site, and time conditions. The 
stochasticity can be implemented simultaneously through 
climate variables (i.e., temperature and solar radiation) and 
the harvest index. 

The flowchart in figure 1 summarizes the main concept 
of the model. Some equations are implied in the flow and 
are not presented. For example, it is observed that the vari-
able T is used in equation 16, but it is important to mention 
that T is first used in equation 19, which leads to equation 
17 and then to equation 16. The input variables Dsow and Se 
(both related to population), DOY (related to the date of 
sowing), Φ and Alt (both related to place), and Sw (related 
to water management) are all user-defined variables, as are 
RUE, k, λPAR, λab, λr, and RAdc (all related to light-plant rela-
tions). The user-defined variable HI is considered in a sto-
chastic manner through a triangular distribution, whereas T 
and Rg can be likewise considered through a triangular (if 
there is no data series) or bivariate normal distribution. 

An initial parameterization was considered as: RUE = 
3.52, k = 0.4257, HI (mode = 0.4, maximum = 0.43, mini-
mum = 0.38), and LA(Dr) according to equation 15. We 
used equation 5 for gross assimilation rate and equation 19 
for thermal time. We also used user-defined values for lati-
tude (-22.425), Angström-Prescott coefficients (aAP = 0.25; 
bAP = 0.5), plant population (66,666 plants ha-1), row spac-
ing (0.9 m), and date of sowing (24 November), in addition 
to the experimental weather data. Above-ground dry matter 
productivity rates (Wpa, kg ha-1 d-1), cumulated above-
ground dry matter (W, kg ha-1), and maize grain productivi-
ty (Wg, kg ha-1) were calculated using equations 23 and 24 
through a deterministic simulation. Additionally, RAdc = 
0.26 was iteratively adjusted. 

A sensitivity analysis was run in a simple manner by an-

 
Figure 1. Flowchart summarizing the model used for simulating maize yield. 
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alyzing how much the grain yield (in percentage) would be 
increased or reduced for each added or subtracted unit of 
MJ m-2 d-1 of solar radiation, considering a correlation be-
tween solar radiation and temperature, in relation to the 
yield observed from climate data of the field experiment 
carried out by Detomini (2008). Prior to these analyses, we 
also performed a sensitivity analysis for the empirical and 
fitted equation 5, which represents the variation of potential 
gross assimilation rate as a function of solar radiation for 
many levels of air temperature (see fig. 2). 

STOCHASTIC PROCEDURE USI�G EITHER  

BIVARIATE �ORMAL DISTRIBUTIO�  

OR TRIA�GULAR DISTRIBUTIO� 

Considering a variable such as maize grain yield, the 
model is deterministic because it will reproduce the exact 
same outputs for a given set of input variables. For situa-
tions where externalities or uncertainties can be neglected 
because they have little effect on the outputs, deterministic 
models are reasonably acceptable in some situations (e.g., 
irrigation design, mixture of chemicals under controlled 
conditions, or fertilizer recommendation for “homogene-
ous” soils). On the other hand, variability might be deter-
minant on the final output (e.g., on the same day of the year 
in a given place, the average air temperatures might be 
around 10°C, 20°C, or even 30°C, highly affecting the final 
plant growth rate). A stochastic procedure would consider 
this variability by releasing too many outputs instead of on-
ly one, with each one related to its corresponding probabil-
ity of occurrence. 

Air temperature, for example, can reveal infinite possi-
bilities of occurrence, even though some frequency around 
a given value will most likely occur. This frequency can be 
low or high for extreme or expected values. A group of in-
finite possibilities associated with their corresponding val-
ues can be eventually expressed by a probability density 
function, and its integration gives the probability function if 
all function properties are confirmed. A Monte Carlo meth-
od consists of inverting the resulting integration and explic-
itly declaring the variable, when possible, remaining only 
using known values of the probabilities for the simulation 
initiation. In fact, pseudo-random numbers are the starting 
point of a Monte Carlo simulation. Matsumoto and Nishi-
mura (1988) developed the Mersenne-Twister algorithm 
that is used in most recognized statistical packages to gen-
erate the starting points. The simulation error (ε) is mini-
mized inversely according to the iteration number (4i), yet 
it also relies on the deviation (σ) of a dataset: 

 

3

4i

σ
ε =

 (25) 

Within the various existing probability distributions, ei-
ther discrete or continuous, the normal distribution is the 
most important from the agronomic knowledge viewpoint, 
not only because many processes are well explained by it 
but also because it is a sort of “outer limit” of most of the 
distributions. Ideally, a distribution is adopted for a dataset 
if it describes the distribution properly, which can be veri-

fied by tests like Kolmogorov-Smirnov. Because a variable 
distribution is an average, the central limit theorem states 
that if a sample is too large (n → ∞), variance is then min-
imized [(σ2/n) → 0] by trending to zero, leading a variable 
to approximately follow a normal distribution [~4 (µ, 
σ2/n)] (i.e., strongly bell-shaped) even for non-normal pop-
ulations. Additionally, the normal distribution fits many 
sample probability distributions very well. A simple starting 
point for simulating two variables that presumably follow 
normal distributions, based on a high 4i, is to use the Box-
Muller transformation to obtain auxiliary variables 1 and 2 
(41 and 42), which depend on a previous generation of 
pseudo-random numbers U1 and U2 that are independent 
from each other and are uniformly distributed according to 
(Box and Muller, 1958, p. 610): 

 
( ) ( )0.5

1 1 22ln cos 24 U U = − π   (26) 

 
( ) ( )0.5

2 1 22ln sin 24 U U = − π   (27) 

For example, if one intends to generate solar radiation 
and air temperature for each day of the year, the first step 
would be to generate two pseudo-random values (U1 and 
U2, both between 0 and 1) and to replicate this step 4i 
times (i.e., 4i = 10,000), i.e., there will be 10,000 values 
for both U1 (1

U1, 
2
U1, …, 10000

U1) and U2 (1
U2, 

2
U2, …, 

10000
U2) for each day. As a result, variables 1

41, 
2
41, …, 

10000
41 and also 1

42, 
2
42, …, 10000

42 will exist. As solar ra-
diation drives practically all processes on Earth, the value 
of this variable is hierarchically generated first. By adapt-
ing the procedure provided by Hogg and Craig (1978), the 
ith value of solar radiation (i

Rg) for whatever day for the ith 
computer-generated auxiliary-1 variable (i

41) is: 

 1
i i

Rg RgRg 4= µ + σ
 (28) 

where µRg and σRg are calculated (from the dataset) from 
the average and standard deviation of solar radiation for 
one day. Note that equation 28 is the inversion of the 
standardized variable Z, where Z ~ 4(µRg, σRg). 

The ith value of temperature (i
T) can be subsequently 

simulated for the same day by considering the ith computed 
auxiliary-2 generated variable (i

42), the calculated average 
and standard deviation of air temperature (µT and σT, re-
spectively) for the same day, the simulated value from 
equation 28, and Pearson’s product-moment coefficient 
correlation (ρ) existing between the variables Rg and T: 

    

( ) ( )0.52
21

i

i iT
T Rg T

Rg

T

Rg 4

=

  σ
  µ + ρ −µ + −ρ σ

 σ     (29) 

Although it is not the main focus of this work, bivariate 
normality can be validated through asymmetry and kurtosis 
coefficients, whereas Bartlett’s test is useful for checking 
variance homogeneity of simulated values in comparison to 
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the observed values. This validation would allow us to 
identify the type of simulation that best agrees with the ob-
servations. Pearson’s correlation coefficient may vary from 
-1 to 1 and equals zero if variables are independent, where-
as covariance evaluates how the dependent variables 
“walk” together independent of sample size (Wonnacott 
and Wonnacott, 1985, p. 132). If ρ = 0 in equation 29, the T 
calculation is arranged in an analogous manner to equation 
28. The correlation measures the strength and linear direc-
tion between two quantitative variables. For our samples 
(Moore, 1995, p. 111): 

 

( )( )

( ) ( )

1

2 2

1 1

n

i Rg i T

i

n 4

i Rg i T

i i

Rg T

Rg T

=

= =

 −µ −µ 
ρ =

−µ −µ

∑

∑ ∑
 (30) 

If there are no climate data, it is necessary to search for 
information from a specialist to derive the subjective pa-
rameters of the triangular distribution, which is often used 
in agribusiness when one wants to subjectively describe a 
population of a continuous variable. The three key parame-
ters of the triangular distribution are mode or “most likely” 
(Mo), maximum (Vmax), and minimum (Vmin). To initiate the 
triangular generation through the Monte Carlo method, a 
critical pseudo-random number (Uc) should first be calcu-
lated according to: 

 

min

max min

Mo V
Uc

V V

−
=

−
 (31) 

Because of the function discontinuity, three possibilities 
of function inversion become: 

   if  X Mo U Uc= =  (32) 

 

( )( ) 0.5
min max min min

if 

X V U V V Mo V

U Uc

 = + − − 
<  (33) 

 

( )( ) ( ) 0.5
max max min min1

if 

X V U V V V Mo

U Uc

 = − − − − 
>  (34) 

Evidence from field experiments shows that as biomass 
increases, harvest index usually decreases with a non-
mechanistic explanation. The uncertainty of the harvest in-
dex and environment relationships also encourages the use 
of a stochastic procedure during the simulation processes, 
regardless of assuming empirical relationships or even a 
single value. Thus, the model assumes a triangular distribu-
tion for simulating the harvest index by considering user-
defined values of the mode, maximum, and minimum. In 
summary, 10,000 pseudo-random values are generated to 
produce the same amount of radiation values and their sub-
sequently correlated air temperatures, both of which follow 
normal distributions. This procedure is done for each day 
(after emergence) of a crop cycle. Ten thousand values of 
the remnant dependent variables are subsequently calculat-

ed, resulting in 10,000 values of grain yield that have to be 
classified per frequency class in a previously calculated 
class number. For a given iteration, each calculated value of 
Wpad (eq. 23) in a given day is summed with the calculated 
Wpad of the previous day. There is certainly an implied er-
ror by doing this calculation because two opposite extreme 
values of radiation may be simulated for two consecutive 
days, sometimes without any physical sense. Nevertheless, 
such error is inversely minimized according to the number 
of iterations (eq. 25). Ten thousand 4i values is a large 
enough sample size. 

The implementation of the stochastic procedures in con-
ventional worksheets would be possible but tiring and quite 
confusing in terms of presentation because several outputs 
would be generated and, consequently, a large number of 
lines or rows would be required. Therefore, it became con-
venient to develop a tool in the Visual Studio 2005 (C#) 
platform to run the model to allow for the best visualization 
of the results. Some input parameters are mandatory, such 
as sowing date, latitude and hemisphere, crop spacing, sow-
ing density, mass of a thousand seeds, Angström-Prescott 
coefficients (the program suggests additional values), and 
the distribution probability. One should opt for triangular 
distribution if no climate data are available or for bivariate 
normal distribution if climate data are available. In the for-
mer case, a meteorology text file needs to be selected. Set-
ting the plant parameters is optional. The main output is a 
histogram of yield probabilities. 

To stochastically evaluate the model, a deterministic 
simulation was first run to check the growth of the above-
ground dry matter throughout the maize cycle. For specific 
purposes, we consider the term “calibration” when a known 
observation of a dependent variable (i.e., maize grain yield) 
is used to predict an input variable (i.e., RAdc). Thus, the 
maize deterministic model was calibrated according to an 
iterative procedure to find RAdc from Wg = 10,472 kg ha-1 
(averaged grain yield) observed in the field and assuming 
constant the other input variables. The input variables RUE, 
k, and LA(Dr) were chosen according to Detomini et al. 
(2008); the variables λPAR, λab, λr, aAP, and bAP were adopt-
ed according to the literature; RAdc was iteratively adjusted 
as a function of grain productivity (Wg = 10,472 kg ha-1) 
found by Detomini (2008); and DOY, Φ, Dsow, and Se were 
defined to meet field experiment conditions. Then the sto-
chastic procedure was run for a different place, e.g., Rock-
hampton, Australia. The climate variables Rg and T were 
simulated according to a bivariate normal distribution fed 
by a climate dataset for this location, and HI was set ac-
cording to a triangular distribution fed by practical sugges-
tion based on field experiment results. 

By selecting the weather dataset for Rockhampton (23° 
22′ 30″), localized near the Tropic of Capricorn in Austral-
ia, for comparison with the Piracicaba weather dataset, sto-
chastic simulations were run by setting the same date and 
variable values assumed for the deterministic simulation, 
i.e., RUE = 3.52, k = 0.4257, HI (mode = 0.40, maximum = 
0.43, minimum = 0.38), LA(Dr) (see eq. 15), equation 5 for 
gross assimilation rate and equation 19 for thermal time, 
Rockhampton latitude and Angström-Prescott coefficients 
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(aAP = 0.25; bAP = 0.5), plant population (66,666; row spac-
ing = 0.9 m), and date of sowing (24 November). Four situ-
ations were considered for the stochastic simulation of 
maize grain: (1) bivariate normal distribution for solar radi-
ation and air temperature under non-water deficit condi-
tions, (2) triangular distribution for solar radiation and air 
temperature under non-water deficit conditions, (3) reduc-
tion of plant population by taking Dsow = 5 plants m-1 under 
non-water deficit conditions, and (4) water supply of 75% 
(Sw = 0.75). The corresponding results are shown in figure 
6. In case 2, the mode as well as maximum and minimum 
values for both variables were based on the Rockhampton 
radiation and temperature dataset (from 24 November up to 
120 days after) as follows: mode of 18 MJ m-2 s-1 and 21°C, 
maximum of 32 MJ m-2 s-1 and 32°C, and minimum of 
6 MJ m-2 s-1 and 15°C. 

RESULTS A�D DISCUSSIO� 
DETERMI�ISTIC SIMULATIO�  

A�D SE�SITIVITY A�ALYSIS 

A comparison of the observed (field experiment) vs. 
simulated (eq. 24) data reveals that the model has a slightly 
overestimated grain productivity of 1.4%, giving an output, 
for example, of 10,620 kg ha-1. If general data are interpo-
lated from Heemst (1986) for obtaining RAdc, we would find 
values of over 0.3 for this variable. Because specific values 
of RAdc are seldom explored in the literature for specific 
genotypes, this problem would exemplify the importance of 
models, namely, that they allow for the identification of 
specific magnitudes of a given variable of interest without 
needing to experimentally derive them through alternative 
experimental conditions, which might require additional 
expenses. 

It can be seen from a sensitivity analysis performed for 
equation 5 that the value of GARp, which depends on solar 
radiation, decreases from a maximum of 33°C even if Rab is 
rising, according to figure 2, which could also be represent-
ed by a surface. The graph is presented in a convenient, il-
lustrative manner. For example, GARp is less responsive to 
Rab when under 25°C compared to 39°C, which is a similar 

behavior to that found by Lizaso et al. (2005). In spite of 
being built empirically, the curves satisfactorily represent 
the process of interest when compared to the curves (simi-
lar to a rectangular hyperbolic shape, except for low tem-
perature values) presented by Pachepsky et al. (1996). For 
physiological reasons, potential gross assimilation rates 
substantially decrease for overcast days such that it is rec-
ommended to make the necessary corrections prior to esti-
mating the actual GAR, following the approaches of 
Heemst (1986) and Verdoodt et al. (2004). This decrease is 
the justification for the existing equation 7 to deplete GARp. 
We believe one good route to specify GAR for each maize 
hybrid would be to adjust RAdc and biological meaningful 
parameters of the beta function (eq. 18). 

Identifying the sensitivity of the maize model yield to 
solar radiation (the main driving variable) is essential be-
cause temperature variation is also calculated using correla-
tion (i.e., eqs. 29 and 30). For example, by adopting climate 
data from the field experiment of Detomini (2008), figure 3 
reveals that each extra unit of MJ m-2 d-1 added to the daily 
solar radiation flow values throughout the maize cycle 
would increase the yield by approximately 4%, which is a 
variation smaller than that of each unit of MJ m-2 d-1 sub-
tracted from each daily value. By correlation, the tempera-
ture varies linearly by more or less than 0.6°C for each 
added or subtracted MJ m-2 d-1, respectively. If the correla-
tion between solar radiation flow and air temperature is ne-
glected (i.e., varying the former but keeping the latter con-
stant), the magnitudes of the simulated yields resulting 
from added units of radiation become even greater, and 
yields resulting from subtracted units become even smaller, 
in comparison to the yields simulated from the aforemen-
tioned field experiment climate data. 

It is worth noting that increasing the amount of radiation 
by 6 MJ m-2 d-1 (and ~3.6°C in temperature by correlation) 
would shorten the time to tasseling by 12 days if the as-
sumptions of thermal time concepts are valid. A decrease in 

Figure 2. Potential gross assimilation rate as a function of absorbable 

photosynthetically active radiation flows for different air tempera-

tures. 

Figure 3. Sensitivity analysis for the absolute variation in temperature 

and relative yield from each unit of MJ m-2 d-1 varied in terms of inci-

dent solar radiation. 
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radiation by the same value would stretch this time to 23 
days. In fact, this phenological stage was observed in the 
field at 55 days after emergence. The proposed model does 
not release the outcome of tasseling. However, these varia-
tions in time are realistic because shortening the maize cy-
cle could eventually lead to a premature definition of the 
number of leaves, whereas stretching it could provoke ex-
cessive growth of vegetative components, especially with 
regard to stalk height, mass, and carbohydrate storage. In 
the case of increasing radiation, for example, the anticipat-
ed growth determination could reduce the productivity in a 
manner contradictory to that identified by sensitivity analy-
sis unless the hybrid was sown in a non-recommended 
place and season. In a second case, for constant given water 
and nitrogen conditions, the sink-source relationships could 
be altered to reduce the yield because the competition of 
assimilates among the different plant tissues would in-
crease. 

The harvest index is another attribute that could be 
strongly modified with the variation of both climate varia-
ble magnitudes and maize biological cycle length, resulting 
in either a reduction or increase in grain yield. However, 
this sensitivity is difficult to analyze, as the harvest index 
generally has an inverse relationship with plant growth, 
which does not necessarily mean that the productivity 
would be smaller, as observed by Detomini (2008). Addi-
tionally, it is difficult to study the effects of climate inputs 
on HI because the variation is not even throughout the cy-
cle, besides the fact that the main periods (vegetative, flow-
ering, and grain filling) contribute through different routes 
to the HI and are different from each other in terms of 
weather sensitivity. 

Quite high values of above-ground dry matter productiv-
ity rates (Wpa) were calculated, which surpassed 600 kg ha-

1 d-1 during the most exigent stage of the cycle (flowering); 
yet low values of Wpa were simulated for the initial stages 
(i.e., before 40 DAE), as expected due to low values of LAI 
and light interception during theses stages. Loomis and 
Connor (1992, p. 41) reported rates at a magnitude of 520 
kg above-ground dry matter ha-1 d-1, presumably for less ef-
ficient hybrids in RUE. According to figure 4, above-
ground dry matter productivity rates tend to naturally de-
crease as a consequence of senescence processes, although 

there is still dry matter accumulation because of a partition-
ing process and carbohydrate transference. Dry matter ac-
cumulation nearly followed a sigmoidal shape, similar to 
the explanatory model developed by Detomini et al. (2008), 
who adjusted field experiment observation data to follow a 
sigmoidal curve. Data from Andrade (1995) corroborate the 
magnitudes of yield and the curve shape of the accumula-
tion of above-ground dry matter, albeit analyzed by a dif-
ferent hybrid and different experimental harvest index. In 
fact, the model in the present study does not simulate pro-
cesses such as senescence or carbon transfers; these pro-
cesses are approached here only to justify some behaviors 
of the deterministic simulation. 

High values of above-ground dry matter productivity 
rates during some days of flowering can be supported by 
coincidences of high values of air temperature with greater 
leaf area index values during the flowering period. Even so, 
full-cover canopy is subjected to abrupt reductions in terms 
of productivity rates if climate conditions are not favorable 
for plant development, as shown near 60 days after emer-
gence (figs. 4a and 4b). Extremely high values of produc-
tivity rates are not frequent in agricultural practice because 
irrigation and other non-controlled variables are rarely con-
trollable for the purpose of achieving such desirable com-
binations. The experimental data were simulated through 
APSIM (APSRU, 2007), and there were no water or nitro-
gen stresses throughout the entire maize cycle, according to 
APSIM released indexes. Thus, we point out that the 
productivity rates verified in the field experiment are relat-
ed to potential conditions of plant growth and development, 
although different environmental situations could lead to 
different potential productivities for maize, in agreement 
with Dobermann et al. (2003). 

On the other hand, if maize was grown under a 25% wa-
ter deficit uniformly distributed throughout a cycle (i.e., Sw 
= 0.75 and thus Fd = 0.69), there would be a 30.26% yield 
reduction, as grain productivity would be 7,303 kg ha-1 (fig. 
4b) instead of 10,620 kg ha-1. This “what if” question is not 
realistic for non-irrigated cases because soil water continu-
ously fluctuates throughout the entire growing season. 
However, as long as there is a necessity for controlling soil 
water contents due to reducing water allocations in irrigated 
agriculture, the assumption of a 25% water deficit could 

 (a) (b)  

Figure 4. Variation of simulated above-ground dry matter productivity rate and cumulated productivity as functions of days after emergence: 

(a) Sw = 1 and (b) Sw = 0.75.  
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provide different results in terms of an economic viability 
extrapolation. For example, what is the magnitude of yield 
and therefore the income that could be achieved by reduc-
ing the water levels by 25% as a result of a reduced water 
allocation imposed by a government? Would it be viable to 
irrigate the crop under this situation? Technically, soil water 
devices allow for the checking and controlling of soil water 
levels with good accuracy, so that setting the level of soil 
water is somewhat reasonably manageable today (i.e., irri-
gation precision). 

One source of error in figure 4b could be the assumption 
of a constant k (eq. 17). As k varies with LAI, especially 
during the early stages, Meinke (1996) showed for wheat 
that in situations where a high leaf area can be achieved, 
the slight underestimation of early dry matter production by 
conventional simulations that use a constant k has no sig-
nificant consequences for dry matter production at anthesis, 
unless the constant k is substantially underestimated. How-
ever, in situations where maximum LAI values are low, as 
is frequently the case in dryland production areas, cumulat-
ed dry matter (i.e., until anthesis) can be significantly un-
derestimated. The value of light coefficient extinction 
should be considered in every simulation model (Monteith, 
1965; Jones and Kiniry, 1986; Meinke et al., 1997). For ex-
ample, the software APSIM 5.2 (APSRU, 2007) assumes a 
constant k = 0.45 for maize. Another difference is that 
APSIM (APSRU, 2007) also considers non-continuous 
functions for describing TT (i.e., TT described linearly and 
for more than one condition), different from the function of 
equation 18, which is continuous. 

The curve in figure 4a was simulated for non-limiting 
conditions of water and nitrogen. It can be compared to an 
explanatory curve derived from experimental data by 
Detomini (2008). The explanatory (statistical) model was 
fitted to a sigmoidal curve with three parameters (p < 0.05, 
F-test = 5083.07, and r2 = 0.9866). By comparing the de-
terministic model curve (for non-limiting conditions) and 
explanatory model curve, it can be seen in figure 5 that the 
former (shown in fig. 4a) tends to underestimate the cumu-
lated above-ground dry matter during the initial stages of 
the maize cycle and overestimate it after these stages.  

According to the comparison (fig. 5) between the deter-
ministic model curve and the explanatory model curve fit-
ted from field experimental data, it is presumed that the 
model satisfactorily simulates maize grain productivity 
(Wg, kg ha-1), although the above-ground dry matter 
productivity rates (Wpa, kg ha-1 d-1) and the cumulated 
above-ground dry matter (W, kg ha-1) are either underesti-
mated or overestimated in some specific stages throughout 
the time course of the maize cycle. The time courses (daily 
basis) shown in figures 4a and 4b express the natural be-
havior of maize growth as a whole and confer a correct bi-
ophysical meaning to the model, in agreement with results 
obtained by Verdoodt et al. (2004). The values implied on 
the curves are also realistic. Therefore, the evaluation of the 
model through deterministic simulation and comparison of 
the models with field experiment observations enable the 
implementation of stochastic procedures on the determinis-
tic model. 

It is convenient to mention that the model assumes that 
there is no nutrient stress during the crop cycle. Soil fertili-
ty is considered to be sufficiently upgraded to such a level 
that it is not necessary to be concerned about it when mi-
cronutrients are correctly supplied. This is very realistic be-
cause farmers engaged in professional agriculture generally 
search for necessary corrections to all soil nutrient shortag-
es prior to sowing the crop. In doing so, they are only con-
cerned about maintaining adequate nitrogen levels to the set 
plant population management variable. On the other hand, 
the model simulates the nitrogen requirement for all simu-
lated yields and outputs only the most likely maximum and 
minimum requirements. This nitrogen model relies on 
many input parameters and was not considered in this arti-
cle. Nitrogen requirement is actually one of the outputs of 
the model. 

STOCHASTIC SIMULATIO�S 

Several values of daily average solar radiation and daily 
average air temperature are possible, but there is a corre-
sponding probability for each one of the daily values ac-
cording to the distribution to which they are likely to be fit. 
As a consequence, maize dry matter productivity rates and 
grain productivity can also vary. A stochastic procedure 
would approach these variations toward the identification 
of not only a single value but also the various classes of 
grain productivities associated with their corresponding 
probabilities. The generation of thousands of pseudo-
random numbers is the beginning step and, particularly for 
the case of the model presented here, works to generate in-
put values of solar radiation and air temperature according 
to either a bivariate normal distribution or a triangular dis-
tribution (if no climate series data are available) and also to 
generate the harvest index according to a triangular distri-
bution. Finally, thousands of above-ground dry matter 
productivity rates and dry matter accumulations would 
have to be generated, regardless of single curves, as pre-
sented in figures 4a and 4b. For convenience, histograms of 
maize grain productivity are presented instead. 

Ideally, the necessity of testing the multivariate normali-
ty hypothesis becomes explicit when a researcher intends to 

Figure 5. Comparison between deterministic model curve and explana-

tory model curve (statistically fitted from field experimental data).  

0 

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000 

Wpa (kg ha-1): Fitted (explanatory) model

1:1 

W
pa

 (
kg

 h
a-1

):
 D

et
er

m
in

is
ti

c 
m

od
el
 



55(3): 1107-1120  1117 

 

evaluate whether the presupposed conditions were met in 
terms of the inference validation that will be done. The ex-
istence of a “most suitable” multinormality test has been 
always undermined (Cantelmo and Ferreira, 2007), such as 
the test based on asymmetry and kurtosis deviation 
(Mardia, 1975) or the test based on Shapiro-Wilk generali-
zation (Royston, 1983). Nevertheless, Mecklin and 
Mundfrom (2004) reinforced that a single method is not 
sufficient to approach the multinormality issue and that it is 
appropriate and even useful to run multiple tests together 
from an applied statistical perspective. For these reasons, 
the model proposed herein is pragmatically not subjected to 
a previous test before releasing a value of radiation or tem-
perature to start the stochastic simulations. 

The existence of a multivariate normal distribution im-
plies the existence of evenly distributed marginal distribu-
tions, although the combined distribution of two variables 
that follow two separate, normal, univariate distributions 
does not necessarily follow one normal, multivariate distri-
bution. According to Hair et al. (2005), in the case in which 
a univariate normality presupposition is not violated, this 
distribution will not necessarily result in an acceptance of 
multivariate normality, although it will help to obtain mul-
tivariate normality. Therefore, if one variable follows a 
multivariate normal distribution, it is also univariate such 
that the simulation of climate data through a bivariate nor-
mal distribution will favor the non-rejection of multivariate 
normality. 

The most likely grain productivity for case 1 was 10,604 
kg ha-1 (11.53% probability) according to figure 6a, which 
is very similar to the productivity simulated using deter-
ministic conditions for Piracicaba. Probabilities around 
0.02% were verified for both extreme (maximum and min-
imum) grain productivities (magnitudes of 12,673 and 
8,634 kg ha-1, respectively). One peculiarity of a normal 
distribution is that the grain productivity average is also the 
most likely value to occur, as the average is equal to the 
mode. If climate data were not available, one could use a 
triangular distribution. There is an unknown correlation in 
this situation, in principle, given that there is no dataset. 
Because of this, it makes no sense to run an adherence test 
such as the Kolmogorov-Smirnov (non-parametric) or chi-
squared (parametric) test, in spite of the reciprocal situation 
being true, i.e., from a dataset, it would be possible to fit 
the data to a triangular distribution and run the tests. 

When simulating maize grain productivity from a trian-
gular distribution, the highest probability (11.5%) corre-
sponds to the achievement of around 11,000 kg ha-1. By se-
lecting case 2, the grain mode becomes 400 kg ha-1 greater 
than that of case 1, and the “shape” of the histogram in fig-
ure 6b is not as symmetric as the other mentioned simula-
tion situations. The small increase in productivity can be 
justified because, for most of the days of a crop cycle, both 
solar radiation and air temperature triangular distributions 
eventually allow the computation of productivity rates 
greater than those computed when a bivariate normal dis-
tribution is used. This computation is acceptable because 
there is an implied error in using a triangular distribution, 
as the mode, maximum, and minimum values are kept con-
stant throughout the maize cycle, which is, indeed, not true. 

By keeping the water supply conditions constant but re-
ducing the sowing density to 5 plants m-1 (i.e., reducing the 
plant population by ~11,111 plants ha-1 as a consequence), 
the resulting histogram shows a productivity break around 
2191 kg ha-1, which is roughly 20% smaller than the poten-
tial productivity achieved in case 1, as can be seen in figure 
6c. Provided that the plant population is kept as previously 
mentioned and the water level supply is reduced to 75% 
(Sw = 0.75 and Fd = 0.69), the model simulates a mode of 
7,576 kg ha-1 (11.97% probability) for grain-depleted 
productivity (fig. 6d). As a conclusion, the model reveals 
that the best decision in a case of water scarcity would be to 
reduce the population instead of irrigating with a 75% wa-
ter deficit, at least for the reductions in both population and 
water supply tested here. It is certainly in this way that 
models are useful, i.e., they allow for the determination of 
how much a change in a variable affects the output to aid in 
assertive decision making. 

All the histograms shown in figure 6 are based on simu-
lated production data. Measured crop yield or production 
data do not behave typically like a Gaussian distribution 
(unlike the histograms in fig. 6). Nevertheless, measured or 
production data are often not sufficient in number of obser-
vations to build a large sample (i.e., a sample with 10,000 
observations). As mentioned in the Materials and Methods 
section, the central limit theorem states that if a sample is 
too large, then variance is minimized by trending to zero, 
leading a variable to approximately follow a normal distri-
bution (i.e., strongly bell-shaped) even for non-normal 
populations. 

Although harvest index values have been simulated by a 
triangular distribution, it might be seen that all histograms 
of yield frequency prevail with a normal distribution shape. 
This is in part expected because driving variables of solar 
radiation and air temperature are both simulated to follow 
normal distributions. On the other hand, the smaller the 
amplitude of HI (maximum simulated value of HI minus 
minimum simulated value of HI), the smaller the resulting 
range of Wg values. Extremely high values (i.e., a right 
“tail” of the histogram) of maize grain productivity are 
likely to occur due to, for example, the least likely and least 
frequent combinations among optimal air temperature, 
more intense radiant regimes, and high harvest index val-
ues. On the contrary, a left tail is obtained. The grain 
productivity mode represents the central portion of the his-
togram and is derived from the most likely values of solar 
radiation and air temperature frequently combined through-
out the maize cycle. Additionally, there is a possibility of 
simulating an extremely high value of solar radiation for a 
given day and simulating an extreme low value for the day 
after, which can be physically meaningless. This misrepre-
sentation would be repaired by equation 25, considering 
that 10,000 pseudo-number values are enough. 

Deterministic models may exhibit lots of errors through 
model design constraints, parameter uncertainty, errors in 
forcing data, and calibration requirements. Moreover, in 
models that require inputs such as air temperature or solar 
radiation, which can be obtained from weather stations, 
there can be errors associated with these measurements be-
cause of instrumentation limitations. This is because, for 
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example, the weather station is some distance away from 
the specific crop location or because different methods are 
used to log data and compute daily averages. One of the 
purposes of stochastic approaches is thus to statistically a
count for errors such as these. 

GE�ERAL CO�SIDERATIO�S 

One particularity of the herein presented model that uses 
a stochastic procedure is that it exhibits some similarities 
with Dutch generic growth models, which were properly 
approached by Ittersum et al. (2003), as carbon dioxide a
similation was taken into account and the prediction of 
phenological events was not considered. The model also 
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It is finally convenient to highlight that the depletion 
factor is only a simplification to express the reduction of 
productivity as a function of water deficit. In fact, if water 
availability is limited, then leaf area expansion is negative-
ly affected and results in a decrease of light interception, 
which in turn decreases above-ground dry matter produc-
tivity rates. The best way to compute Wpad prior to Wpa 
would be to collate models such as those based on leaf area 
expansion as a function of water status (Reymmond et al., 
2003) with those based on the variation of the light extinc-
tion coefficient as a function of leaf area. 

In summary, the proposed deterministic model simulates 
realistic and robust values for maize grain productivity and 
for above-ground dry matter productivity rates and accu-
mulation. Besides being considered satisfactory as the basis 
of the suggested stochastic model, this model is superior 
because it presents a range of outcomes that account for the 
probabilities of variable values and some implied errors as-
sociated with these. Through either a bivariate normal dis-
tribution or a triangular distribution for generating solar ra-
diation and temperature values and through a triangular 
distribution for generating harvest index values, the sto-
chastic model predicted similar values (i.e., mode) of grain 
productivity to those values observed in a field experiment. 
It is expected that some model improvements will be made 
as other genotypes are used to contribute to its evaluation in 
different sites, especially for some specific parameters. 

CO�CLUSIO�S 
The construction of a model with stochastic components 

was presented, and it was validated for two distant sites 
with similar climate conditions. The stochastic simulations 
output pointedly similar mode values to those obtained 
from a deterministic simulation, which itself was similar to 
the data observed from a field experiment with no water 
stress. The model can be satisfactorily used to simulate 
maize yield, although it should be improved if one is inter-
ested in simulating some specific above-ground dry matter 
data throughout the crop cycle or even in predicting some 
phenological stages of maize growth. 
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