STOCHASTIC MODEL FOR SIMULATING MAIZE YIELD
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ABSTRACT. Maize is one of the most important crops in the world. The products generated from this crop are largely used
in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these
reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in
which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be
investigated with ecophysiological crop models, which can be organized according to different philosophies and
structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and
productivity under different conditions of water supply while considering the uncertainties of daily climate data.
Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the
philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in
terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate
water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal
distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain
productivity, i.e., it was found that 10,604 kg ha™ is the most likely grain productivity, very similar to the productivity
simulated by the deterministic model and for the real conditions based on a field experiment.
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he advent of crop models implemented on

computers can be traced back to groundbreaking

work in the 1950s, such as the study by Monsi

and Saeki (1953) on light interception and de
Wit’s (1958) classic “Transpiration and Crop Yields” that
also draws on some of Penman’s early work (Penman,
1948). These and similar publications constructed the
framework for the emerging formalism of system analysis
(Zadoks and Rabbinge, 1985). Phrasing physiological
processes in mathematical terms and collating them to
meteorological variables led to today’s proliferation of
computer simulation models that have been developed and
used in agriculture.
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Simulation models of agricultural plants, crops, and
cropping  systems are becoming commonplace.
Traditionally, they have been used as knowledge
depositories by scientists to describe an area of interest.
Once available, interest quickly shifted from curiosity
about the underlying principles to the use of models either
in a predictive capacity (e.g., to develop scenarios or to
support decisions) or in an explanatory capacity to
investigate interactions between processes studied in an
isolated manner. This manner of studying models initiated a
debate about the appropriateness of mathematically
describing biological relationships and the level of details
needed to achieve a “good” model. Defining this goodness,
by clearly stating the objectives of every modeling endeavor,
could make much of that debate redundant (Meinke, 1996).

Arguments about the right way to build crop models
have largely concentrated on the level of empiricism
acceptable  when  representing  such  sequences
mathematically. Passioura (1996) asserted that the purpose
of scientific models is to improve our understanding of
physiology and environmental interactions, while
engineering models utilize robust, empirical relationships
to obtain results. This separation would constitute a
traditional reductionist paradigm because it would reinforce
the disassociation of scientific and engineering modeling
rather than allow for a synthesis of the different
approaches. Rather than separating engineering from
science and alienating many professionals in the process, it
might be more useful to view this differentiation as the
pragmatic end of a continuous quest for knowledge and a
solution to the problems. Used constructively, this polarity
should advance future model developments (Meinke, 1996).
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Thus, models are simplified representations of a system
that is a part of the real world and contains related compo-
nents inside predefined boundaries. This system can be af-
fected by the surroundings, but the surroundings cannot af-
fect it significantly. The definition of scale is very
important to ensure that the conclusions of a system will of-
ten be based on the performance of the low-hierarchy com-
ponents. The main roles of models, in our understanding,
are to: (1) organize information; (2) highlight gaps in the
various research areas of knowledge; (3) visualize a robust
idea about the potentialities, limitations, or eventually
magnitudes of a given variable of interest; and (4) simulate
impossible and difficult scenarios (e.g., CO, injection on
earth, insect biology studies). Moreover, the existence of a
coincidence does not necessarily imply a cause-effect rela-
tionship.

The applicability of crop models emerges when one
needs to optimize the use of resources such as land and wa-
ter under given boundary conditions. For example, if an
economist intends to calculate the highest possible profita-
bility under certain resource constraints (i.e., land and wa-
ter) over the course of an agricultural project, the analysis
regarding how much water and land area could be available
for cropping during a couple of years will depend on re-
fined and well-established crop models. This analysis cer-
tainly justifies modeling research efforts meant to improve
simulation outputs. It is convenient, for instance, to classify
models only as deterministic and stochastic, regardless of
other non-straightforward distinctions. Although determin-
istic models can output a solution through simple mathe-
matical implementation, they are limited because they pro-
vide only a single outcome. In contrast, stochastic models,
which use statistical methods or stochastic components,
provide a range of results, with each result associated with
its corresponding probability of occurrence.

Maize is one of the most important crops in the world.
The products generated from this crop are largely used in
the starch industry, the animal and human nutrition sector,
and biomass energy production and refineries. For these
reasons, there is frequently a significant interest in knowing
the potential grain yield of maize genotypes in relation to
the environment in which they will be subjected for crop-
ping, as productivity directly affects agribusiness or farm
profitability. The main objective of this work is to concep-
tualize a stochastic model for predicting maize grain yield
and productivity under different conditions of water supply
while considering the uncertainties of daily climate data. A
deterministic model and some outputs are also analyzed to
evaluate the time course of the above-ground dry matter
growth of maize.

MATERIALS AND METHODS
MODEL DESCRIPTION AND A
BRIEF PARAMETERIZATION

The proposed model includes concepts from both gener-
ic (i.e., the family of Dutch models) and maize-specific
(i.e., CERES-Maize; Jones and Kiniry, 1986) approaches.
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Our maize model includes assimilation processes and de-
pends on few empirical input parameters; it does not pre-
dict any crop phenology except the physiological maturity
point as a function of thermal time. Dobermann et al.
(2003) provided a good comparison between each family of
models by pointing out a number of advantages and disad-
vantages of each family.

From dimensional analysis, Detomini (2008) derived the
following mechanistic equation for estimating the potential
above-ground dry matter (DM) on a daily basis:

Wpa =0.1498-GP-L; - RUE 1)
where Wpa is the potential above-ground dry matter (kg
DM ha™' d') estimated for a given day, GP is the gross
photosynthesis rate (kg CH,0 ha™ d), A, is the fraction
of solar radiation intercepted by the canopy, and RUE is
the radiation use efficiency (g above-ground dry matter
MJ" intercepted photosynthetically active radiation).

The GP function was also deducted by collating
Clapeyron’s law with dimensional analysis according to
Detomini (2008):

_36.5854-GAR-LAI-H - P
T+273

GP

2

where GAR is the gross assimilation rate (uL CO, cm™
leaf area h™), LAl is the leaf area index, H is the day
length (h d"), P is the atmospheric pressure (atm) that re-
lies on altitude (4/t, m), and T is the daily average air
temperature (°C). Clapeyron’s law is generally used to
convert the volume of a given substance into its corre-
sponding mass, leading to a justification of GAR units in a
volume basis. Substituting equation 2 into equation 1
yields:

GAR-LAI-H -P

Wpa = 5.48
T+273

A, RUE
3)

Bouger-Lambert’s law states that photosynthetically ac-
tive radiation transmitted (PAR, MJ m™ d') vertically
through a canopy can be derived from Beer’s law (Monsi
and Saeki, 1953):

PAR, = PARy (™14

= “
where PAR, refers to the incident photosynthetically ac-
tive radiation flow (MJ m™ d') on top of the canopy, and
k is the light extinction coefficient. The ratio PAR,/PAR,
defines transmittance (1) so that the complementary frac-
tion (1 — t) defines the intercepted fraction (A;). For prac-
tical purposes, A; could also be understood as a canopy
covering fraction if canopy leaves are randomly oriented
and spread (Loomis and Connor, 1992, p. 274).

The basic difference between Bouger-Lambert’s law and
Beer’s law is that the latter assumes a homogeneous mean,
which does not occur in plant populations (Loomis and
Connor, 1992, p. 36). Thus, k& should not be constant
through either the canopy profile or the crop cycle. The
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light extinction coefficient rapidly decreases as LAl values
increase during the initial stages of crop development, but it
is likely to assume a constant value if the canopy closes fast
(i.e., under irrigated field conditions). Because of this, the in-
itial variations of & can be neglected for crop model purposes
in non-limiting conditions of water (Meinke, 1996).

It is important to highlight that equation 3 explains the
daily above-ground dry matter as a function of plant varia-
bles, such as RUE, k (implicit, see eq. 4), GAR, and LA,
and as a function of seasonal and climate variables, such as
day length (H), atmospheric pressure (P), temperature (7),
and absorbable radiation flow. This latter variable can be
explicitly stated by expressing GAR (eq. 7) as a function of
equation 5, which relies on both air temperature and solar
radiation flow (implicit, see eq. 6). By analyzing data from
the graphs shown by Heemst (1986) for C4 plants,
Detomini (2008) presented an empirical generic function
for describing the potential gross assimilation rate (GAR,,
uL CO, cm™ leaf area h™") under controlled conditions:

GARP =

Ay + ARy + A RZ, + AR, + Ay In(T)

1+ ARy + A2y + A7 R3, + Ag In(T) + Ao [In(T) .
where T is the air temperature (0 < 7 < 40°C), and R, is
the absorbable photosynthetically active radiation flow
(0 < R, < 0.35 cal cm™ leaf area min™"). The empirical,
non-user-defined parameters are: 4, = 1.566792, A, =
53515909, 4, = -221.805971, A; = 310.191491, 4, =
-0.491961, As = -0.190506, As = 0.373910, 4, =
-0.088166, A3 =-0.554728, and 49 = 0.080398.

In fact, the absorbable photosynthetically active radia-
tion flow was derived from a dimensional analysis by
Detomini (2008) as a function of solar radiation flow (Rg,
MJ m? d") and day length (H, h d") with some corrections:

Ry, = 0.3987EAPARAM, (1-2,)
H (6)
According to Sinclair and Muchow (1999), representa-
tive values for Apyr and A, would be 0.5 (MJ
photosynthetically active radiation MJ™ incident solar radi-
ation) and 0.85 (MJ absorbable radiation MJ"
photosynthetically ~ active  radiation),  respectively.
Oguntunde and van de Giesen (2004) suggested a value of
A = 0.23 (MJ soil-plant reflected radiation MJ" incident
solar radiation) for maize crop albedo.
GAR), is corrected by cloudiness effects according to:

GAR = [FNubRAdc +(1 = Enub )]GARP (7
where R,,., specific to genotype, is the relationship be-
tween gross assimilation rates under a clear sky and gross
assimilation rates under an overcast sky; and Fy,;, specif-
ic to environment, is a cloudiness factor responsible for
correcting the theoretical potential gross assimilation rate.
The magnitude of the former was simulated to be around
0.2626 (Detomini, 2008), whereas the latter might be di-
rectly obtained if insolation data are available or, if not,

55(3): 1107-1120

estimated by implying that radiation flow during strongly
overcast days accounts for 20% of the flow on very clear
days, according to:

R
ayp +O4p ) KT
(®)
where a,p and b,p are the Angstrom-Prescott coefficients,
and Ry is the estimated radiation incident on top of the
atmosphere once the Earth’s eccentricity (DRST) and
sunset hour angle (44n, degrees) are calculated:

Ry =37.6DRST? | Ahn-sin| ® — |sin| {—
180 180

+cos [d) %J cos [(; %Jsin (Ahn)}

)
DRST? =1+0.033 cos(DOYz—nj
365 10)
Ahn =ﬂ
24 (11)

Note that equation 7 turns the generalized equation (eq.
5) into a specific condition by collating information from
the plant (R,4), the climate (Rg), and the local (a,p, b4p,
and R7) conditions for a given day of the year (DOY). The
resulting angle between the imaginary plane of the equator
and the imaginary line that links earth to the sun defines the
solar declination (&, degrees) and relies on DOY:

2
¢ = 23.45sin [—R(DOY - 80)}
365 (12)
Thus, the length of a given day might be obtained as:

H = ﬁarccos [— tan (C %j tan (—CD %H
" (13)

where @ refers to the latitude (decimal values) of the
place of interest. Negative values of @ are conventionally
set for locations in the southern hemisphere.

Because plant populations depend on both plant density
of sowing (D,,,, plants m") and spacing (S,, m), these
measurements are required for defining the leaf area index
(LAI) in addition to the leaf area (L4, cm® plant™). At a
farm-level view:

147 =104 1.4 Psow
Se (14)

Several models have been proposed to approach plant
leaf area. For example, Dwyer and Stewart (1986) intro-
duced a bell-shaped function for estimating a single maize
leaf as a function of the number of fully expanded leaves.
This model was remarkable because it revealed many
meaningful parameters, such as skewness, breadth, and the
largest area and position of a single leaf (Valentinuz and
Tollenar, 2006). However, there is still some empiricism for
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extrapolating this model for the whole plant because it re-
quires empirical linear fittings for predicting the largest ar-
ea and leaf position, in addition to the eventual leaf number.
We suggest using a closed empirical Gauss model, which is
somewhat similar to the mechanistic model presented by
Yang and Alley (2005). The functional form of our Gauss
model is:

—O‘S[LV_YZ Jz
LA(Dr)=1ve " (15)
where Dr is the relative crop development, and v, v,, and
v; are the empirical parameters.

The first parameter (y,) of equation 15 is biologically
meaningful because it represents the maximum value of the
entire plant leaf area (LAma), equal to 8654.91 cm” in a
model where Dr = y, = 0.5758 (Detomini, 2008). The
meaning of the third parameter (y;) is not well established,
although it approximately a quarter of the entire Dr (y; =
0.2473). Instead of considering time for crop development
duration, this parameter was considered on a dimensionless
basis (i.e., Dr) to allow better generalization for future
comparisons with data obtained from other studies and ex-
periments.

The relative crop development defines the cumulative
thermal time (CTT}, °C d) on the jth day after emergence in
relation to the cumulative thermal time at a physiological
maturity point (C77,,,, °C d), consistent with the following
approach:

CTTj

I Ty

mpp (16)

The value of CT7,,, was found as 1392.82°C d from

field experimental data (Detomini et al., 2008). However,

the variable is user-defined in the model and varies accord-

ing to maize genotype. The CTT is the sum of single daily
thermal times (77}, °C):

n
CTT; = Z TT;
/=l (17)

If the relative development rate is well represented by a
non-linear function but has a linear relationship with 77,
this variable can also be described by a non-linear function.
After reviewing “degree-days” concepts, Bonhomme
(2000) explained the limitations of traditional degree-day
calculation methods and suggested a beta function to calcu-
late TT, with upper (TDpayx, °C), lower (D, °C), and op-
timal (7D,,, °C) temperatures for development. First pro-
posed by Yin et al. (1995), the beta function is assumed as
the best option to calculate thermal times because it is
based on relatively flexible mathematical laws and has few
parameters, all physically and biologically meaningful, ac-
cording to:
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T =
TD,, ~TDpip

Dy ~TD,,
T

max

[ D, T—TDyi

-T
TDyax — 1Dy, ][TDOP—TDmin (18)
Assuming user-defined values of 7Ty, TDiax, TD,p,
and 7D, equal to 25, 44, 35, and 0, respectively, the func-
tion that particularly describes thermal time as a function of
air temperature will only depend on daily air temperature
(T, °C), for example:

_ o y3.89
TT =0.0793(44-T)T (19)

A helpful approach to establishing a relationship be-
tween water and yield productivity was proposed by
Doorenbos and Kassam (1979):

Wa WUa
WZH{I_@[I_ WU H

The ky values for most crops are derived under the as-
sumption that the relationship between relative yield
(Wa/W) and relative water use (WUa/WU) is linear and is
valid for water deficits up to about 50%, or (1 — WUa/WU)
= 0.5. The values of ky are based on an analysis of experi-
mental field data covering a wide range of growing condi-
tions. The experimental results used represent high-
producing crop varieties, well adapted to the growing envi-
ronment and grown under a high level of crop management.
The ratio WUa/WU may either occur continuously
throughout the entire growth period of the crop, or it may
occur during any one of the individual growth periods (i.e.,
i=1,2, ..., n). Analysis of the available experimental field
data in terms of the more precisely defined stress-day and
drought indices proved difficult. On the other hand, if a
simulation process is modeled on a one-day scale, the orig-
inal production model of Doorenbos and Kassam (1979)
collapses because the day-to-day multiplication of a deci-
mal factor would quickly deplete the production. To solve
this problem, our model assumes a continuous and equally
distributed day-to-day water deficit to calculate the produc-
tivity depletion, as will be shown later, so that a value of
1.25 might be adopted for maize hybrids in this situation.
Thus:

(20)

I—Wp—ad:LZS(l—@j
Wpa ET 1)
where Wpad is the depleted, above-ground dry matter
productivity rate (kg ha™ d™'), ETa is the actual evapotran-
spiration (mm d), and ET is the potential evapotranspira-
tion (mm d™).

The relationship E7a/ET could be interpreted as an index
of water stress under which a plant population develops
(Laar et al., 1992, p. 40), which is equal to one if there is no
deficit and zero if the deficit is severe. In reality, this rela-
tionship indicates the water supply level (Sw) because its
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Figure 1. Flowchart summarizing the model used for simulating maize yield.

opposite (i.e., | — ETa/ET) would be the level of stress. If
Wpad is explicit and Sw is inserted into equation 21:

Wpad =Wpa|1-1.25(1-Sw)] @)

The term inside the brackets is, therefore, a depletion
factor (Fd; kg potential above-ground dry matter productiv-
ity rate kg depleted above-ground dry matter productivity
rate). By inserting equation 3 into equation 22, it is possible
to find a simple model to predict depleted above-ground
dry matter productivity rates on a daily basis as:

Wpad =

5.48MXIRUE[I—I.25(I—Sw)]

T+273 (23)

In agreement with the approach of Verdoodt et al.
(2004), the summation of daily dry matter (eq. 23) until
reaching the economically useful stage of a crop, which in
this model is the maturity point, results in the final cumu-
lated above-ground dry matter productivity that should ac-
count for harvest index (HI; kg grain kg depleted above-
ground dry matter) in the calculation for the grain produc-
tivity simulation (Wg; kg grain ha™"):

n

Wg =HIY Wpad,;
/=0 (24)
According to equation 24, there is no plant weight loss.
This weight stability might be justified because the daily
calculations of Wpa already account for the efficiency of
radiation use (RUE), and the senescing losses are accounted
for in the LA equation. Equation 24 is the final determinis-
tic model used to predict maize grain productivity (on a dry
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basis) under specific limited and non-limited water supply,
climate, population, site, and time conditions. The
stochasticity can be implemented simultaneously through
climate variables (i.e., temperature and solar radiation) and
the harvest index.

The flowchart in figure 1 summarizes the main concept
of the model. Some equations are implied in the flow and
are not presented. For example, it is observed that the vari-
able T is used in equation 16, but it is important to mention
that T is first used in equation 19, which leads to equation
17 and then to equation 16. The input variables Dy, and S,
(both related to population), DOY (related to the date of
sowing), ® and Alf (both related to place), and Sw (related
to water management) are all user-defined variables, as are
RUE, k, Ap4r, Maps My and R 4. (all related to light-plant rela-
tions). The user-defined variable HI is considered in a sto-
chastic manner through a triangular distribution, whereas T
and Rg can be likewise considered through a triangular (if
there is no data series) or bivariate normal distribution.

An initial parameterization was considered as: RUE =
3.52, k = 0.4257, HI (mode = 0.4, maximum = 0.43, mini-
mum = 0.38), and LA(Dr) according to equation 15. We
used equation 5 for gross assimilation rate and equation 19
for thermal time. We also used user-defined values for lati-
tude (-22.425), Angstrom-Prescott coefficients (ap = 0.25;
bsp = 0.5), plant population (66,666 plants ha™"), row spac-
ing (0.9 m), and date of sowing (24 November), in addition
to the experimental weather data. Above-ground dry matter
productivity rates (Wpa, kg ha' d'), cumulated above-
ground dry matter (W, kg ha™"), and maize grain productivi-
ty (Wg, kg ha™) were calculated using equations 23 and 24
through a deterministic simulation. Additionally, R, =
0.26 was iteratively adjusted.

A sensitivity analysis was run in a simple manner by an-
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alyzing how much the grain yield (in percentage) would be
increased or reduced for each added or subtracted unit of
MJ m™ d” of solar radiation, considering a correlation be-
tween solar radiation and temperature, in relation to the
yield observed from climate data of the field experiment
carried out by Detomini (2008). Prior to these analyses, we
also performed a sensitivity analysis for the empirical and
fitted equation 5, which represents the variation of potential
gross assimilation rate as a function of solar radiation for
many levels of air temperature (see fig. 2).

STOCHASTIC PROCEDURE USING EITHER
BIVARIATE NORMAL DISTRIBUTION
OR TRIANGULAR DISTRIBUTION

Considering a variable such as maize grain yield, the
model is deterministic because it will reproduce the exact
same outputs for a given set of input variables. For situa-
tions where externalities or uncertainties can be neglected
because they have little effect on the outputs, deterministic
models are reasonably acceptable in some situations (e.g.,
irrigation design, mixture of chemicals under controlled
conditions, or fertilizer recommendation for “homogene-
ous” soils). On the other hand, variability might be deter-
minant on the final output (e.g., on the same day of the year
in a given place, the average air temperatures might be
around 10°C, 20°C, or even 30°C, highly affecting the final
plant growth rate). A stochastic procedure would consider
this variability by releasing too many outputs instead of on-
ly one, with each one related to its corresponding probabil-
ity of occurrence.

Air temperature, for example, can reveal infinite possi-
bilities of occurrence, even though some frequency around
a given value will most likely occur. This frequency can be
low or high for extreme or expected values. A group of in-
finite possibilities associated with their corresponding val-
ues can be eventually expressed by a probability density
function, and its integration gives the probability function if
all function properties are confirmed. A Monte Carlo meth-
od consists of inverting the resulting integration and explic-
itly declaring the variable, when possible, remaining only
using known values of the probabilities for the simulation
initiation. In fact, pseudo-random numbers are the starting
point of a Monte Carlo simulation. Matsumoto and Nishi-
mura (1988) developed the Mersenne-Twister algorithm
that is used in most recognized statistical packages to gen-
erate the starting points. The simulation error (g) is mini-
mized inversely according to the iteration number (i), yet
it also relies on the deviation (o) of a dataset:

3o

JINi

Within the various existing probability distributions, ei-
ther discrete or continuous, the normal distribution is the
most important from the agronomic knowledge viewpoint,
not only because many processes are well explained by it
but also because it is a sort of “outer limit” of most of the
distributions. Ideally, a distribution is adopted for a dataset
if it describes the distribution properly, which can be veri-

(25)
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fied by tests like Kolmogorov-Smirnov. Because a variable
distribution is an average, the central limit theorem states
that if a sample is too large (» — o0), variance is then min-
imized [(6/n) — 0] by trending to zero, leading a variable
to approximately follow a normal distribution [~N (u,
o*/n)] (i.e., strongly bell-shaped) even for non-normal pop-
ulations. Additionally, the normal distribution fits many
sample probability distributions very well. A simple starting
point for simulating two variables that presumably follow
normal distributions, based on a high Mi, is to use the Box-
Muller transformation to obtain auxiliary variables 1 and 2
(N, and N,), which depend on a previous generation of
pseudo-random numbers U; and U, that are independent
from each other and are uniformly distributed according to
(Box and Muller, 1958, p. 610):

N :[—Zln(Ul)]O's cos(2nU,) 26)

05 .

N, = |:—211’1(U1 )] sm(2nU2) 27

For example, if one intends to generate solar radiation
and air temperature for each day of the year, the first step
would be to generate two pseudo-random values (U, and
U,, both between 0 and 1) and to replicate this step Ni
times (i.e., Ni = 10,000), i.e., there will be 10,000 values
for both U, (‘U,, *Uy, ..., "U)) and U, (‘U,, *Us, ...,
10000Uz) for each day. As a result, variables 'Ny, 2N,
IOOOONI and also 1N2, 2N2, e IOOOONz will exist. As solar ra-
diation drives practically all processes on Earth, the value
of this variable is hierarchically generated first. By adapt-
ing the procedure provided by Hogg and Craig (1978), the
ith value of solar radiation (‘Rg) for whatever day for the ith
computer-generated auxiliary-1 variable (‘N;) is:

1 1
Rg = Hprg +Oprg Ny (28)
where iz, and o, are calculated (from the dataset) from
the average and standard deviation of solar radiation for
one day. Note that equation 28 is the inversion of the
standardized variable Z, where Z ~ N(ug,, Grg).

The ith value of temperature ('T) can be subsequently
simulated for the same day by considering the ith computed
auxiliary-2 generated variable ('N,), the calculated average
and standard deviation of air temperature (u; and o7, re-
spectively) for the same day, the simulated value from
equation 28, and Pearson’s product-moment coefficient
correlation (p) existing between the variables Rg and T

G . 05
ur +[PG—TJ(le—MRg) +(1—P ) or'N,
R
¢ (29)
Although it is not the main focus of this work, bivariate
normality can be validated through asymmetry and kurtosis
coefficients, whereas Bartlett’s test is useful for checking

variance homogeneity of simulated values in comparison to
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the observed values. This validation would allow us to
identify the type of simulation that best agrees with the ob-
servations. Pearson’s correlation coefficient may vary from
-1 to 1 and equals zero if variables are independent, where-
as covariance evaluates how the dependent variables
“walk” together independent of sample size (Wonnacott
and Wonnacott, 1985, p. 132). If p = 0 in equation 29, the T
calculation is arranged in an analogous manner to equation
28. The correlation measures the strength and linear direc-
tion between two quantitative variables. For our samples
(Moore, 1995, p. 111):

ZH:[(Rgi —HRg )(Tz —ur )J

i=1

p:

n D) N )
Z(Rgi —HRg) DT —ur)
i=1 i=1 (30)

If there are no climate data, it is necessary to search for
information from a specialist to derive the subjective pa-
rameters of the triangular distribution, which is often used
in agribusiness when one wants to subjectively describe a
population of a continuous variable. The three key parame-
ters of the triangular distribution are mode or “most likely”
(Mo), maximum (Vy,.y), and minimum (V). To initiate the
triangular generation through the Monte Carlo method, a
critical pseudo-random number (Uc) should first be calcu-
lated according to:

Uc = Mo — Vmin

Vmax ~Vinin 31

Because of the function discontinuity, three possibilities
of function inversion become:

X=Mo if U=Uc (32)

0.5
X =Vhin +[U<Vmax —Vnin )(MO —Vinin ):|

if U <Uc (33)

X = Vs = (1=U) (Vanax —Vimin ) (Vinin —Mo)]o'5

if U >Uc (34)

Evidence from field experiments shows that as biomass
increases, harvest index usually decreases with a non-
mechanistic explanation. The uncertainty of the harvest in-
dex and environment relationships also encourages the use
of a stochastic procedure during the simulation processes,
regardless of assuming empirical relationships or even a
single value. Thus, the model assumes a triangular distribu-
tion for simulating the harvest index by considering user-
defined values of the mode, maximum, and minimum. In
summary, 10,000 pseudo-random values are generated to
produce the same amount of radiation values and their sub-
sequently correlated air temperatures, both of which follow
normal distributions. This procedure is done for each day
(after emergence) of a crop cycle. Ten thousand values of
the remnant dependent variables are subsequently calculat-
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ed, resulting in 10,000 values of grain yield that have to be
classified per frequency class in a previously calculated
class number. For a given iteration, each calculated value of
Wpad (eq. 23) in a given day is summed with the calculated
Wpad of the previous day. There is certainly an implied er-
ror by doing this calculation because two opposite extreme
values of radiation may be simulated for two consecutive
days, sometimes without any physical sense. Nevertheless,
such error is inversely minimized according to the number
of iterations (eq. 25). Ten thousand Ni values is a large
enough sample size.

The implementation of the stochastic procedures in con-
ventional worksheets would be possible but tiring and quite
confusing in terms of presentation because several outputs
would be generated and, consequently, a large number of
lines or rows would be required. Therefore, it became con-
venient to develop a tool in the Visual Studio 2005 (C#)
platform to run the model to allow for the best visualization
of the results. Some input parameters are mandatory, such
as sowing date, latitude and hemisphere, crop spacing, sow-
ing density, mass of a thousand seeds, Angstrom-Prescott
coefficients (the program suggests additional values), and
the distribution probability. One should opt for triangular
distribution if no climate data are available or for bivariate
normal distribution if climate data are available. In the for-
mer case, a meteorology text file needs to be selected. Set-
ting the plant parameters is optional. The main output is a
histogram of yield probabilities.

To stochastically evaluate the model, a deterministic
simulation was first run to check the growth of the above-
ground dry matter throughout the maize cycle. For specific
purposes, we consider the term “calibration” when a known
observation of a dependent variable (i.e., maize grain yield)
is used to predict an input variable (i.e., Ry,.). Thus, the
maize deterministic model was calibrated according to an
iterative procedure to find R, from Wg = 10,472 kg ha™!
(averaged grain yield) observed in the field and assuming
constant the other input variables. The input variables RUE,
k, and LA(Dr) were chosen according to Detomini et al.
(2008); the variables Apsr, Aups Ay aqp, and byp were adopt-
ed according to the literature; R, . was iteratively adjusted
as a function of grain productivity (Wg = 10,472 kg ha™)
found by Detomini (2008); and DOY, ®, D,,,, and S, were
defined to meet field experiment conditions. Then the sto-
chastic procedure was run for a different place, e.g., Rock-
hampton, Australia. The climate variables Rg and T were
simulated according to a bivariate normal distribution fed
by a climate dataset for this location, and HI was set ac-
cording to a triangular distribution fed by practical sugges-
tion based on field experiment results.

By selecting the weather dataset for Rockhampton (23°
22" 30"), localized near the Tropic of Capricorn in Austral-
ia, for comparison with the Piracicaba weather dataset, sto-
chastic simulations were run by setting the same date and
variable values assumed for the deterministic simulation,
i.e., RUE =3.52, k= 0.4257, HI (mode = 0.40, maximum =
0.43, minimum = 0.38), LA(Dr) (see eq. 15), equation 5 for
gross assimilation rate and equation 19 for thermal time,
Rockhampton latitude and Angstrom-Prescott coefficients
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(ayp=0.25; byp = 0.5), plant population (66,666; row spac-
ing = 0.9 m), and date of sowing (24 November). Four situ-
ations were considered for the stochastic simulation of
maize grain: (1) bivariate normal distribution for solar radi-
ation and air temperature under non-water deficit condi-
tions, (2) triangular distribution for solar radiation and air
temperature under non-water deficit conditions, (3) reduc-
tion of plant population by taking D,,,, = 5 plants m”" under
non-water deficit conditions, and (4) water supply of 75%
(Sw = 0.75). The corresponding results are shown in figure
6. In case 2, the mode as well as maximum and minimum
values for both variables were based on the Rockhampton
radiation and temperature dataset (from 24 November up to
120 days after) as follows: mode of 18 MJ m™ s and 21°C,
maximum of 32 MJ m? s and 32°C, and minimum of
6 MIm” s and 15°C.

RESULTS AND DISCUSSION
DETERMINISTIC SIMULATION
AND SENSITIVITY ANALYSIS

A comparison of the observed (field experiment) vs.
simulated (eq. 24) data reveals that the model has a slightly
overestimated grain productivity of 1.4%, giving an output,
for example, of 10,620 kg ha™. If general data are interpo-
lated from Heemst (1986) for obtaining R 4,., we would find
values of over 0.3 for this variable. Because specific values
of R4, are seldom explored in the literature for specific
genotypes, this problem would exemplify the importance of
models, namely, that they allow for the identification of
specific magnitudes of a given variable of interest without
needing to experimentally derive them through alternative
experimental conditions, which might require additional
expenses.

It can be seen from a sensitivity analysis performed for
equation 5 that the value of GAR,, which depends on solar
radiation, decreases from a maximum of 33°C even if R, is
rising, according to figure 2, which could also be represent-
ed by a surface. The graph is presented in a convenient, il-
lustrative manner. For example, GAR,, is less responsive to
R, when under 25°C compared to 39°C, which is a similar

3001

—o—1°C
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%)
=3
S

GAR, (1L CO, em™'h™)
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Figure 2. Potential gross assimilation rate as a function of absorbable
photosynthetically active radiation flows for different air tempera-
tures.
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behavior to that found by Lizaso et al. (2005). In spite of
being built empirically, the curves satisfactorily represent
the process of interest when compared to the curves (simi-
lar to a rectangular hyperbolic shape, except for low tem-
perature values) presented by Pachepsky et al. (1996). For
physiological reasons, potential gross assimilation rates
substantially decrease for overcast days such that it is rec-
ommended to make the necessary corrections prior to esti-
mating the actual GAR, following the approaches of
Heemst (1986) and Verdoodt et al. (2004). This decrease is
the justification for the existing equation 7 to deplete GAR,,.
We believe one good route to specify GAR for each maize
hybrid would be to adjust R4, and biological meaningful
parameters of the beta function (eq. 18).

Identifying the sensitivity of the maize model yield to
solar radiation (the main driving variable) is essential be-
cause temperature variation is also calculated using correla-
tion (i.e., egs. 29 and 30). For example, by adopting climate
data from the field experiment of Detomini (2008), figure 3
reveals that each extra unit of MJ m™ d' added to the daily
solar radiation flow values throughout the maize cycle
would increase the yield by approximately 4%, which is a
variation smaller than that of each unit of MJ m™ d”' sub-
tracted from each daily value. By correlation, the tempera-
ture varies linearly by more or less than 0.6°C for each
added or subtracted MJ m™ d”', respectively. If the correla-
tion between solar radiation flow and air temperature is ne-
glected (i.e., varying the former but keeping the latter con-
stant), the magnitudes of the simulated yields resulting
from added units of radiation become even greater, and
yields resulting from subtracted units become even smaller,
in comparison to the yields simulated from the aforemen-
tioned field experiment climate data.

It is worth noting that increasing the amount of radiation
by 6 MJ m™ d"' (and ~3.6°C in temperature by correlation)
would shorten the time to tasseling by 12 days if the as-
sumptions of thermal time concepts are valid. A decrease in
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Figure 3. Sensitivity analysis for the absolute variation in temperature
and relative yield from each unit of MJ m? d' varied in terms of inci-
dent solar radiation.
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Figure 4. Variation of simulated above-ground dry matter productivity rate and cumulated productivity as functions of days after emergence:

(@) Sw=1 and (b) Sw=0.75.

radiation by the same value would stretch this time to 23
days. In fact, this phenological stage was observed in the
field at 55 days after emergence. The proposed model does
not release the outcome of tasseling. However, these varia-
tions in time are realistic because shortening the maize cy-
cle could eventually lead to a premature definition of the
number of leaves, whereas stretching it could provoke ex-
cessive growth of vegetative components, especially with
regard to stalk height, mass, and carbohydrate storage. In
the case of increasing radiation, for example, the anticipat-
ed growth determination could reduce the productivity in a
manner contradictory to that identified by sensitivity analy-
sis unless the hybrid was sown in a non-recommended
place and season. In a second case, for constant given water
and nitrogen conditions, the sink-source relationships could
be altered to reduce the yield because the competition of
assimilates among the different plant tissues would in-
crease.

The harvest index is another attribute that could be
strongly modified with the variation of both climate varia-
ble magnitudes and maize biological cycle length, resulting
in either a reduction or increase in grain yield. However,
this sensitivity is difficult to analyze, as the harvest index
generally has an inverse relationship with plant growth,
which does not necessarily mean that the productivity
would be smaller, as observed by Detomini (2008). Addi-
tionally, it is difficult to study the effects of climate inputs
on HI because the variation is not even throughout the cy-
cle, besides the fact that the main periods (vegetative, flow-
ering, and grain filling) contribute through different routes
to the HI and are different from each other in terms of
weather sensitivity.

Quite high values of above-ground dry matter productiv-
ity rates (Wpa) were calculated, which surpassed 600 kg ha
"d" during the most exigent stage of the cycle (flowering);
yet low values of Wpa were simulated for the initial stages
(i.e., before 40 DAE), as expected due to low values of LAI
and light interception during theses stages. Loomis and
Connor (1992, p. 41) reported rates at a magnitude of 520
kg above-ground dry matter ha” d”', presumably for less ef-
ficient hybrids in RUE. According to figure 4, above-
ground dry matter productivity rates tend to naturally de-
crease as a consequence of senescence processes, although
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there is still dry matter accumulation because of a partition-
ing process and carbohydrate transference. Dry matter ac-
cumulation nearly followed a sigmoidal shape, similar to
the explanatory model developed by Detomini et al. (2008),
who adjusted field experiment observation data to follow a
sigmoidal curve. Data from Andrade (1995) corroborate the
magnitudes of yield and the curve shape of the accumula-
tion of above-ground dry matter, albeit analyzed by a dif-
ferent hybrid and different experimental harvest index. In
fact, the model in the present study does not simulate pro-
cesses such as senescence or carbon transfers; these pro-
cesses are approached here only to justify some behaviors
of the deterministic simulation.

High values of above-ground dry matter productivity
rates during some days of flowering can be supported by
coincidences of high values of air temperature with greater
leaf area index values during the flowering period. Even so,
full-cover canopy is subjected to abrupt reductions in terms
of productivity rates if climate conditions are not favorable
for plant development, as shown near 60 days after emer-
gence (figs. 4a and 4b). Extremely high values of produc-
tivity rates are not frequent in agricultural practice because
irrigation and other non-controlled variables are rarely con-
trollable for the purpose of achieving such desirable com-
binations. The experimental data were simulated through
APSIM (APSRU, 2007), and there were no water or nitro-
gen stresses throughout the entire maize cycle, according to
APSIM released indexes. Thus, we point out that the
productivity rates verified in the field experiment are relat-
ed to potential conditions of plant growth and development,
although different environmental situations could lead to
different potential productivities for maize, in agreement
with Dobermann et al. (2003).

On the other hand, if maize was grown under a 25% wa-
ter deficit uniformly distributed throughout a cycle (i.e., Sw
= 0.75 and thus Fd = 0.69), there would be a 30.26% yield
reduction, as grain productivity would be 7,303 kg ha™' (fig.
4b) instead of 10,620 kg ha™. This “what if” question is not
realistic for non-irrigated cases because soil water continu-
ously fluctuates throughout the entire growing season.
However, as long as there is a necessity for controlling soil
water contents due to reducing water allocations in irrigated
agriculture, the assumption of a 25% water deficit could
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provide different results in terms of an economic viability
extrapolation. For example, what is the magnitude of yield
and therefore the income that could be achieved by reduc-
ing the water levels by 25% as a result of a reduced water
allocation imposed by a government? Would it be viable to
irrigate the crop under this situation? Technically, soil water
devices allow for the checking and controlling of soil water
levels with good accuracy, so that setting the level of soil
water is somewhat reasonably manageable today (i.e., irri-
gation precision).

One source of error in figure 4b could be the assumption
of a constant £ (eq. 17). As k varies with LAI, especially
during the early stages, Meinke (1996) showed for wheat
that in situations where a high leaf area can be achieved,
the slight underestimation of early dry matter production by
conventional simulations that use a constant £ has no sig-
nificant consequences for dry matter production at anthesis,
unless the constant & is substantially underestimated. How-
ever, in situations where maximum LA/ values are low, as
is frequently the case in dryland production areas, cumulat-
ed dry matter (i.e., until anthesis) can be significantly un-
derestimated. The value of light coefficient extinction
should be considered in every simulation model (Monteith,
1965; Jones and Kiniry, 1986; Meinke et al., 1997). For ex-
ample, the software APSIM 5.2 (APSRU, 2007) assumes a
constant k¥ = 0.45 for maize. Another difference is that
APSIM (APSRU, 2007) also considers non-continuous
functions for describing 77 (i.e., 7T described linearly and
for more than one condition), different from the function of
equation 18, which is continuous.

The curve in figure 4a was simulated for non-limiting
conditions of water and nitrogen. It can be compared to an
explanatory curve derived from experimental data by
Detomini (2008). The explanatory (statistical) model was
fitted to a sigmoidal curve with three parameters (p < 0.05,
F-test = 5083.07, and 1* = 0.9866). By comparing the de-
terministic model curve (for non-limiting conditions) and
explanatory model curve, it can be seen in figure 5 that the
former (shown in fig. 4a) tends to underestimate the cumu-
lated above-ground dry matter during the initial stages of
the maize cycle and overestimate it after these stages.

25000
Q20000

15000

10000

Wpa (kg ha™): Deterministic model

5000
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Figure S. Comparison between deterministic model curve and explana-
tory model curve (statistically fitted from field experimental data).
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According to the comparison (fig. 5) between the deter-
ministic model curve and the explanatory model curve fit-
ted from field experimental data, it is presumed that the
model satisfactorily simulates maize grain productivity
(Wg, kg ha'), although the above-ground dry matter
productivity rates (Wpa, kg ha' d') and the cumulated
above-ground dry matter (¥, kg ha™) are either underesti-
mated or overestimated in some specific stages throughout
the time course of the maize cycle. The time courses (daily
basis) shown in figures 4a and 4b express the natural be-
havior of maize growth as a whole and confer a correct bi-
ophysical meaning to the model, in agreement with results
obtained by Verdoodt et al. (2004). The values implied on
the curves are also realistic. Therefore, the evaluation of the
model through deterministic simulation and comparison of
the models with field experiment observations enable the
implementation of stochastic procedures on the determinis-
tic model.

It is convenient to mention that the model assumes that
there is no nutrient stress during the crop cycle. Soil fertili-
ty is considered to be sufficiently upgraded to such a level
that it is not necessary to be concerned about it when mi-
cronutrients are correctly supplied. This is very realistic be-
cause farmers engaged in professional agriculture generally
search for necessary corrections to all soil nutrient shortag-
es prior to sowing the crop. In doing so, they are only con-
cerned about maintaining adequate nitrogen levels to the set
plant population management variable. On the other hand,
the model simulates the nitrogen requirement for all simu-
lated yields and outputs only the most likely maximum and
minimum requirements. This nitrogen model relies on
many input parameters and was not considered in this arti-
cle. Nitrogen requirement is actually one of the outputs of
the model.

STOCHASTIC SIMULATIONS

Several values of daily average solar radiation and daily
average air temperature are possible, but there is a corre-
sponding probability for each one of the daily values ac-
cording to the distribution to which they are likely to be fit.
As a consequence, maize dry matter productivity rates and
grain productivity can also vary. A stochastic procedure
would approach these variations toward the identification
of not only a single value but also the various classes of
grain productivities associated with their corresponding
probabilities. The generation of thousands of pseudo-
random numbers is the beginning step and, particularly for
the case of the model presented here, works to generate in-
put values of solar radiation and air temperature according
to either a bivariate normal distribution or a triangular dis-
tribution (if no climate series data are available) and also to
generate the harvest index according to a triangular distri-
bution. Finally, thousands of above-ground dry matter
productivity rates and dry matter accumulations would
have to be generated, regardless of single curves, as pre-
sented in figures 4a and 4b. For convenience, histograms of
maize grain productivity are presented instead.

Ideally, the necessity of testing the multivariate normali-
ty hypothesis becomes explicit when a researcher intends to
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evaluate whether the presupposed conditions were met in
terms of the inference validation that will be done. The ex-
istence of a “most suitable” multinormality test has been
always undermined (Cantelmo and Ferreira, 2007), such as
the test based on asymmetry and kurtosis deviation
(Mardia, 1975) or the test based on Shapiro-Wilk generali-
zation (Royston, 1983). Nevertheless, Mecklin and
Mundfrom (2004) reinforced that a single method is not
sufficient to approach the multinormality issue and that it is
appropriate and even useful to run multiple tests together
from an applied statistical perspective. For these reasons,
the model proposed herein is pragmatically not subjected to
a previous test before releasing a value of radiation or tem-
perature to start the stochastic simulations.

The existence of a multivariate normal distribution im-
plies the existence of evenly distributed marginal distribu-
tions, although the combined distribution of two variables
that follow two separate, normal, univariate distributions
does not necessarily follow one normal, multivariate distri-
bution. According to Hair et al. (2005), in the case in which
a univariate normality presupposition is not violated, this
distribution will not necessarily result in an acceptance of
multivariate normality, although it will help to obtain mul-
tivariate normality. Therefore, if one variable follows a
multivariate normal distribution, it is also univariate such
that the simulation of climate data through a bivariate nor-
mal distribution will favor the non-rejection of multivariate
normality.

The most likely grain productivity for case 1 was 10,604
kg ha' (11.53% probability) according to figure 6a, which
is very similar to the productivity simulated using deter-
ministic conditions for Piracicaba. Probabilities around
0.02% were verified for both extreme (maximum and min-
imum) grain productivities (magnitudes of 12,673 and
8,634 kg ha™', respectively). One peculiarity of a normal
distribution is that the grain productivity average is also the
most likely value to occur, as the average is equal to the
mode. If climate data were not available, one could use a
triangular distribution. There is an unknown correlation in
this situation, in principle, given that there is no dataset.
Because of this, it makes no sense to run an adherence test
such as the Kolmogorov-Smirnov (non-parametric) or chi-
squared (parametric) test, in spite of the reciprocal situation
being true, i.e., from a dataset, it would be possible to fit
the data to a triangular distribution and run the tests.

When simulating maize grain productivity from a trian-
gular distribution, the highest probability (11.5%) corre-
sponds to the achievement of around 11,000 kg ha™. By se-
lecting case 2, the grain mode becomes 400 kg ha” greater
than that of case 1, and the “shape” of the histogram in fig-
ure 6b is not as symmetric as the other mentioned simula-
tion situations. The small increase in productivity can be
justified because, for most of the days of a crop cycle, both
solar radiation and air temperature triangular distributions
eventually allow the computation of productivity rates
greater than those computed when a bivariate normal dis-
tribution is used. This computation is acceptable because
there is an implied error in using a triangular distribution,
as the mode, maximum, and minimum values are kept con-
stant throughout the maize cycle, which is, indeed, not true.
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By keeping the water supply conditions constant but re-
ducing the sowing density to 5 plants m™ (i.e., reducing the
plant population by ~11,111 plants ha™ as a consequence),
the resulting histogram shows a productivity break around
2191 kg ha™', which is roughly 20% smaller than the poten-
tial productivity achieved in case 1, as can be seen in figure
6¢. Provided that the plant population is kept as previously
mentioned and the water level supply is reduced to 75%
(Sw = 0.75 and Fd = 0.69), the model simulates a mode of
7,576 kg ha' (11.97% probability) for grain-depleted
productivity (fig. 6d). As a conclusion, the model reveals
that the best decision in a case of water scarcity would be to
reduce the population instead of irrigating with a 75% wa-
ter deficit, at least for the reductions in both population and
water supply tested here. It is certainly in this way that
models are useful, i.e., they allow for the determination of
how much a change in a variable affects the output to aid in
assertive decision making.

All the histograms shown in figure 6 are based on simu-
lated production data. Measured crop yield or production
data do not behave typically like a Gaussian distribution
(unlike the histograms in fig. 6). Nevertheless, measured or
production data are often not sufficient in number of obser-
vations to build a large sample (i.e., a sample with 10,000
observations). As mentioned in the Materials and Methods
section, the central limit theorem states that if a sample is
too large, then variance is minimized by trending to zero,
leading a variable to approximately follow a normal distri-
bution (i.e., strongly bell-shaped) even for non-normal
populations.

Although harvest index values have been simulated by a
triangular distribution, it might be seen that all histograms
of yield frequency prevail with a normal distribution shape.
This is in part expected because driving variables of solar
radiation and air temperature are both simulated to follow
normal distributions. On the other hand, the smaller the
amplitude of HI (maximum simulated value of HI minus
minimum simulated value of HI), the smaller the resulting
range of Wg values. Extremely high values (i.e., a right
“tail” of the histogram) of maize grain productivity are
likely to occur due to, for example, the least likely and least
frequent combinations among optimal air temperature,
more intense radiant regimes, and high harvest index val-
ues. On the contrary, a left tail is obtained. The grain
productivity mode represents the central portion of the his-
togram and is derived from the most likely values of solar
radiation and air temperature frequently combined through-
out the maize cycle. Additionally, there is a possibility of
simulating an extremely high value of solar radiation for a
given day and simulating an extreme low value for the day
after, which can be physically meaningless. This misrepre-
sentation would be repaired by equation 25, considering
that 10,000 pseudo-number values are enough.

Deterministic models may exhibit lots of errors through
model design constraints, parameter uncertainty, errors in
forcing data, and calibration requirements. Moreover, in
models that require inputs such as air temperature or solar
radiation, which can be obtained from weather stations,
there can be errors associated with these measurements be-
cause of instrumentation limitations. This is because, for
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Figure 6. Maize grain productivity histograms considering that plant populations are sufficiently supplied with nitrogen: (a) bivariate normal
distribution for solar radiation and air temperature under no-water-deficit conditions (case 1), (b) triangular distribution for solar radiation and
air temperature under no-water-deficit conditions (case 2), (c) reduction of the plant population by taking D,,, = 5 plants m™ under no-water-
deficit conditions (case 3), and (d) consequence of using a water supply that is 75% of the optimal condition (Sw = 0.75; or 25% water deficit)

(case 4).

example, the weather station is some distance away from
the specific crop location or because different methods are
used to log data and compute daily averages. One of the
purposes of stochastic approaches is thus to statistically ac-
count for errors such as these.

GENERAL CONSIDERATIONS

One particularity of the herein presented model that uses
a stochastic procedure is that it exhibits some similarities
with Dutch generic growth models, which were properly
approached by Ittersum et al. (2003), as carbon dioxide as-
similation was taken into account and the prediction of
phenological events was not considered. The model also
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brings some particularities with the family of specific mod-
els such as CERES-Maize and APSIM, as it omits respira-
tion processes by adopting the radiation use efficiency to
compute above-ground dry matter productivity rates.
Moreover, the model relies on air temperature as the main
variable to predict leaf area. The family of generic models
assumes only a few parameters, most of them with physical
or biological meaning, and it is not specific for any geno-
types to capture photoperiod sensitivity and genetic poten-
tial in terms of kernel number and ear rows, as is done em-
pirically by the specific models. Interestingly, the model
presented in this work considers both empirical specificity
and mechanistic features.
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It is finally convenient to highlight that the depletion
factor is only a simplification to express the reduction of
productivity as a function of water deficit. In fact, if water
availability is limited, then leaf area expansion is negative-
ly affected and results in a decrease of light interception,
which in turn decreases above-ground dry matter produc-
tivity rates. The best way to compute Wpad prior to Wpa
would be to collate models such as those based on leaf area
expansion as a function of water status (Reymmond et al.,
2003) with those based on the variation of the light extinc-
tion coefficient as a function of leaf area.

In summary, the proposed deterministic model simulates
realistic and robust values for maize grain productivity and
for above-ground dry matter productivity rates and accu-
mulation. Besides being considered satisfactory as the basis
of the suggested stochastic model, this model is superior
because it presents a range of outcomes that account for the
probabilities of variable values and some implied errors as-
sociated with these. Through either a bivariate normal dis-
tribution or a triangular distribution for generating solar ra-
diation and temperature values and through a triangular
distribution for generating harvest index values, the sto-
chastic model predicted similar values (i.e., mode) of grain
productivity to those values observed in a field experiment.
It is expected that some model improvements will be made
as other genotypes are used to contribute to its evaluation in
different sites, especially for some specific parameters.

CONCLUSIONS

The construction of a model with stochastic components
was presented, and it was validated for two distant sites
with similar climate conditions. The stochastic simulations
output pointedly similar mode values to those obtained
from a deterministic simulation, which itself was similar to
the data observed from a field experiment with no water
stress. The model can be satisfactorily used to simulate
maize yield, although it should be improved if one is inter-
ested in simulating some specific above-ground dry matter
data throughout the crop cycle or even in predicting some
phenological stages of maize growth.
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