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Abstract

Smallflower umbrella sedge is a prolific C; weed commonly found in rice fields in 47 countries. The
increasing infestation of herbicide-resistant smallflower umbrella sedge populations threatens rice
production. Our objectives for this study were to characterize thermal requirements for germination
of smallflower umbrella sedge seeds from rice fields in California and to parameterize a population
thermal-time model for smallflower umbrella sedge germination. Because the use of modeling tech-
niques is hampered by the lack of thermal-time model parameters for smallflower umbrella sedge
seed germination, trials were carried out by placing field-collected seeds in a thermogradient table
set at constant temperatures of 11.7 to 41.7 C. Germination was assessed daily for 30 d, and the
whole experiment was repeated a month later. Using probit regression analysis, thermal time to
median germination [f1(sp)], base temperature for germination (7}), and SD of thermal times
for germination [Ogy(sg)] Were estimated from germination data, and model parameters were
derived using the Solver tool in Microsoft Excel®. Germination rates increased linearly below the
estimated optimum temperatures of 33.5 to 36 C. Estimated T}, averaged 16.7 C, whereas Orso)
equaled 17.1 degree-days and o,y(50) was only 0.1 degree-day. The estimated T}, for smallflower
umbrella sedge is remarkably higher than that of japonica and indica types of rice, as well as T,
of important weeds in the Echinochloa complex. Relative to the latter, smallflower umbrella sedge
has lower thermal-time requirements to germination and greater germination synchronicity.
However, it would also initiate germination much later because of its higher T, given low soil
temperatures early in the rice growing season in California. When integrated into weed growth
models, these results might help optimize the timing and efficacy of smallflower umbrella sedge
control measures.

Introduction

Smallflower umbrella sedge is a prolific C; weed and a major competitor of rice in 47 countries,
ranging from tropical to warm temperate regions. Smallflower umbrella sedge can cause up to
50% rice yield losses (Sanders 1994). In the early 1990s, smallflower umbrella sedge
management was complicated by the evolution of resistance to acetolactate synthase
(ALS)-inhibiting herbicides; ALS-resistant smallflower umbrella sedge currently infests rice
fields in eight countries (Heap 2019). More recently, ALS-inhibitor-resistant populations from
rice fields in California evolved resistance to the photosystem II-inhibitor propanil due to a D1
Val-,,9-Ile mutation, the first instance of smallflower umbrella sedge resistance to a site of action
other than the ALS enzyme (Pedroso et al. 2016). Such findings highlight the need for innovative
tools for improved smallflower umbrella sedge control.

Knowledge of weed seed germination biology and crop-weed interactions can enhance the
effectiveness of weed control methods through better understanding of the timing of weed and
crop emergence, which, in turn, is critical for the outcome of weed-related yield losses (Boddy
et al. 2012; Chauhan and Johnson 2009). However, contradictory results have been reported for
smallflower umbrella sedge. Ismail et al. (2007) obtained maximum germination less than 50%,
whereas other studies reported germination levels of 83% (Chauhan and Johnson 2009;
Derakhshan and Gherekhloo 2013; Kim and Mercado 1987), which could not be clearly
attributed to different genotypes tested or methodologies used for seed germination.

Temperature is the single most important factor regulating germination of nondormant
weed seeds in irrigated annual agroecosystems at the beginning of the growing season
(Garcia-Huidobro et al. 1982). When seed populations are subjected to temperature gradients,
physiologically meaningful parameters can be estimated and used to successfully predict weed
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seed germination, using population-based threshold models
(Bradford 2002; Forcella et al. 2000). Among these, the thermal-
time model describes germination time courses as a function of
the accumulation of temperature (T) in excess of a threshold or
base temperature (T,) below which phenological development
ceases, multiplied by the time to germination (f,) required by
fraction or percentage g of the population (Bewick et al. 1988;
Satorre et al. 1985). In addition to Ty, two other cardinal
temperatures define the suitable range for seed germination in a
given species: optimum temperature (7T,) and ceiling temperature
(T,). T, is defined as the T that maximizes the germination rate
(GRy) for a given percentage or fraction g of the seed population,
whereas T, is the highest T at which germination can occur for a
given species (Forcella et al. 2000).

Germination under suboptimum temperatures can be
described on the basis of accumulated heat units above T}, yielding
the thermal time constant, 01(g), calculated using the following
equation:

br(g) = (T — Ty)t, 1)

which is the thermal time expressed in units such as growing
degree-days (Cd) needed to complete the germination of fraction
gof the seed population (Bradford 1990). GR, is the inverse of ¢, for
a given fraction g of the seed population, and constitutes a linear
function of T above T:

GRg = 1/ty = (T — Ty,)/0x(g) )

Given that 61(g) in equation 1 is assumed to follow a normal
distribution, parameters for the thermal-time model can be esti-
mated from germination data using probit regression analysis
(Boddy et al. 2012):

probit(g) = { [log(T — Ty)t,] — loghz(50) }oyr (3)

where probit (g) is the probit transformation of cumulative germi-
nation percentage that linearizes its cumulative normal distribu-
tion on a logarithmic scale; 6r(50) is thermal time for median
germination; and oy is the SD in log thermal times to germination
among individual seeds in the population.

The thermal-time model is thus based on the accumulation of
temperature over time and is appropriate for predictions of plant
development (Bradford 2002). Derakhshan and Gherekhloo
(2013) reported cardinal temperatures for germination of a
smallflower umbrella sedge population from Iranian fields.
However, important model parameters such as 61(50) and median
thermal-time distribution, ©gr(so), needed for integration into
more complex growth models, are still lacking in the literature.
Moreover, germination parameters may differ among ecotypes
from different regions within the same species. It is thus necessary
to conduct germination tests using local genotypes as the seed
source to better predict weed seed germination and emergence
at a regional level (Ellis and Butcher 1988).

Our primary objectives for this study were to characterize
thermal requirements for germination of smallflower umbrella
sedge seeds from rice fields in California, and to parameterize a
population thermal time model for smallflower umbrella sedge
germination.
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Material and Methods

Smallflower umbrella sedge seeds were collected from 15 rice fields
throughout California’s Northern Sacramento Valley (39°27'N;
121°48'W). Ten plants were randomly selected per rice field,
and seeds were cleaned and dry stored at 7 C until used in germi-
nation tests. Whole-plant assays conducted using bensulfuron-
methyl demonstrated that the seed set comprised mostly
ALS-inhibitor resistant seeds (data not shown). Before germina-
tion tests, seeds were placed in containers filled with de-ionized
water and stored under dark conditions at 10 C for 2 months to
break dormancy by simulating overwintering conditions in
California rice fields (Baskin and Baskin 2001; Boddy et al
2012). The cold-stratification procedure was repeated a month
later for a second run of germination tests, allowing for the analysis
of germination times as displayed by the nondormant fraction of
the seed population.

Germination tests were carried out on a one-dimensional
thermogradient table set at constant temperatures of 11.7, 13.2,
21.0, 24.5, 29.7, 33.5, 36.0, and 41.7 C, using a Conviron®
CMP3244 unit (Controlled Environments Inc., Temecula, CA)
as a heater and a VWR?® Scientific 1171MD refrigerated chiller
(VWR Scientific Products, Tempe, AZ). Approximately 50 seeds
were placed in 3.5-cm-diameter petri dishes with two Whatman
No. 1 filter paper discs. Approximately 2.0 mL of de-ionized
water were added to each petri dish for filter paper saturation.
The dish was then held on its side to drain excess water and avoid
formation of a film of water around the seeds, thereby providing
an aerobic environment for seed germination. Dishes were fitted
with covers and sealed with Parafilm (Bemis Company, Inc,
Neenah, WI) to prevent evaporation. Under fluorescent lights,
seeds were exposed to a 14-h photoperiod at 18 pmol m=2 s7!
photosynthetic photon-flux density, an appropriate level for seed
germination studies (Baskin and Baskin 2001). Three replicate
dishes containing 50 seeds each were placed within each iso-
thermal lane on the thermogradient table. Because of their
minute size, seeds were viewed under a microscope at X10
magnification. Coleoptile protrusion of 0.5 mm was used as
the germination criterion. Germinated seeds were counted and
removed every 24 h over 30 d; water in dishes was replenished
whenever needed, using isothermal water kept within each tem-
perature lane for this purpose. It was assumed that 30 d was suf-
ficient time for nondormant seeds to germinate.

The probit regression analysis shown in equation 3 was used to
estimate thermal-time model parameters from the pool of
observed germination data collected at the suboptimal temperature
range of 21 to 33.5 C, given that such suboptimal incubation
temperatures allowed for final germination greater than 50%, as
required (Bradford 1990). Three sets of model parameters were
derived by replication using the Solver tool in Microsoft Excel®
(Microsoft Corp., Redmond, WA) to minimize the root-mean-
square error between observed and simulated germination data
(Huarte and Benech-Arnold 2010). Model parameters were
subjected to ANOVA after Box-Cox transformation to meet
assumptions (JMP 8.0 software; SAS Institute, Inc., Cary, NC),
and comparisons were made across both germination trials.
Using these parameters, the original germination time courses
were reproduced as cumulative normal curves of the following
function:

G = [logt, — (log 6(50) — log(T — Ty))]oyr 4)
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Table 1. Final smallflower umbrella sedge seed germination.

Parameter? Run 1 Run 2 P value®
Final G, % + SE© 822+13 85.4 + 1.7 0.1511
Ty, °C + SE9 16.72 + 0.48 16.63 + 0.36 0.8898
Or(s0) Cd £ SE%e 17.09 + 0.7 16.03 + 0.9 0.4114
Gor(s0) Cd + SE 0.101 + 0.04 0.102 + 0.02 0.9871

?Abbreviations: f(s0), SD in thermal time within the seed population; 6yt (sq), thermal time constant to median germination; Cd, degree-days; G, germination percentage;T,, base temperature.
5P values were obtained following ANOVA on each parameter at an « level of 0.05; n = 30. None was statistically significant.
Average percentage of total germinated seeds placed at temperatures between 21 C and 33.5 C.

dParameters are derived from equation 3.
€61 (s0) is presented as 10° T(50).
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Figure 1. Cumulative percentage of smallflower umbrella sedge germination plotted over days after seeding. Data points are averages based on three replicates of approx-
imately 50 seeds each. Assessments were performed for 30 d. (A) First run of germination experiments. (B) Second run of germination, performed 1 month after run 1.

where G is cumulative germination percentage (Bradford 1990).
Time (in days) to median germination (t5y) was estimated by non-
linear regression analysis using the NLIN procedure in SAS
(Steinmaus et al. 2000). GRsy, median germination rates calculated
as 1/t59 and expressed in days, were estimated for each incubation
temperature and germination test. GRs, values were plotted against
test temperatures to estimate T, (Boddy et al. 2012). Data are
reported as mean + SE.

Results and Discussion

Smallflower umbrella sedge seed viability was high throughout
both runs of germination tests (Table 1). Final germination per-
centages for test temperatures between 21.0 C and 36.0 C were sim-
ilar across experiments and averaged 82.0% + 1.3% and 85.4% =+

1.7% for the first and second runs, respectively, suggesting that sig-
nificant primary dormancy was either not present or had been sub-
stantially removed from the seed set during the stratification
period. These results agree with findings by Chauhan and
Johnson (2009), Derakhshan and Gherekhloo (2013), and Kim
and Mercado (1987), despite the use of nonstratified seeds in ger-
mination tests carried out by those authors.

Seed germination did not take place at 11.7 C regardless of trial run
(Figure 1). GRs increased linearly until 33.5 C (Figure 2), suggesting
data collected at temperatures of 36.0 °C or higher were in the supra-
optimal range and are inadequate for developing models to predict
germination based on thermal-time accumulation (Steinmaus et al.
2000). These results agree with previous findings that smallflower
umbrella sedge germination is favored by temperatures higher than
25 C (Chauhan and Johnson 2009; Derakhshan and Gherekhloo
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Figure 2. Median germination rates (days) for smallflower umbrella sedge across temperatures of 21 to 41.75 C. Bars represent SE based on three replicates of approximately 50

seeds. R? > 0.95 for both lines. GRsy, median germination rate; T, temperature.

Table 2. Base temperature for germination of smallflower umbrella sedge and
other weedy species in rice, as well as indica and japonica type rice, according to
studies in the literature.

Species Tb (+ SE)? Study (year)
Cyperus difformis 16.67 £ 0.4 Present study.
Echinochloa phyllopogon 9.27 0.3 Boddy et al. (2012)

E. crus-galli 12.99 + 1.3 Steinmaus et al. (2000)
Oryza sativa ssp.indica 13.02 £ 0.4 Ali et al. (2006)

0. sativa ssp.japonica 10° Lee (2001)

2Abbreviation: T,, base temperature.
bEstimated from preliminary germination results; SE values not available.

2013; Ismail et al. 2007). There was thermo-inhibition of germination
at 41.7 C (Figure 1). A ceiling temperature could not be determined,
because germination occurred even at the highest incubation
temperature.

The thermal-time model parameters Tb, 81(50), and Ggr(se) did
not differ across trial runs (Table 1); T, averaged 16.67 C. This
value is slightly higher than that reported by Derakhshan and
Gherekhloo (2013), which could be related to the model presented
in this work being developed using a wider range of test temper-
atures (Bradford 2002). Variations within a species due to genetic
diversity of ecotypes from separate geographic regions can also be
expected (Baskin and Baskin 2001). Smallflower umbrella
sedged1(50) averaged 16.55 + 0.7 Cd, which is nearly half the
61(50) estimated for another troublesome rice weed, late water-
grass [Echinochloa oryzicola (Vasinger) Vasinger] (Boddy et al.
2012). Thermal-time model parameters were used in conjunction
with equation 4 to reproduce the original germination time courses
plotted against thermal units (Figure 3). Prediction lines fit
observed germination and fitting errors were minimized; root-
mean-square error values generated during T}, determination were
0.031 and 0.038, an indication of the model's goodness of fit
(Mayer and Butler 1993; Spokas and Forcella 2006). Most small-
flower umbrella sedge seeds germinate by 25 Cd (Figure 3). The
SD in Ggr(s0) averaged 0.1 Cd, indicating synchronous seed germi-
nation, as indicted by the steep slopes in Figure 3. In comparison,
Gor(s0) calculated for late watergrass averaged 1.25 Cd.

Synchronous smallflower umbrella sedge seed germination
constitutes a very desirable trait from a weed-control point of view
because it is correlated with more uniform seedling emergence
(Forcella et al. 2000), which, in turn, could benefit its control using
POST herbicides. Moreover, results also indicate that primary seed
dormancy is not present in this species, which is corroborated by
findings reported in the literature (Chauhan and Johnson 2009;
Derakhshan and Gherekhloo 2013; Kim and Mercado 1987).
This is also desirable from a modeling standpoint, because
progressive dormancy alleviation could lead to multiple germina-
tion and seedling emergence fluxes (Boddy et al. 2012).

Thermal-time model parameters presented in this study are
expected to aid in conceptualizing smallflower umbrella sedge
management tactics in Californian rice fields. Depending on rice
seeding date, smallflower umbrella sedge could initiate germina-
tion later than rice and some of its key weedy competitors, due
to its higher T}, values (Table 2). In Colusa County, a major
rice-growing area in California, if rice is seeded in mid-April when
soil temperatures average 18 C (UC IPM 2013), models indicate
smallflower umbrella sedge germination is completed within 7
d, longer than the 4.5 d needed for late watergrass germination
in such conditions. However, if rice is sown 20 d later at optimum
seeding date, warmer temperatures would mean germination of
both weed species would require only 4 d to be completed.

A small fraction of the seed set was able to germinate at 13.2 Cin
both experiments (Figure 1), which is below the calculated T,
values. This outcome suggests the presence of different T}, values
among certain fractions of the seed set, which mostly comprised
ALS-inhibitor-resistant individuals. Mutations at the proline
197 residue within the ALS enzyme endowing resistance to ALS
inhibitors have been associated with altered germination at low
temperatures, due to an altered enzyme feedback sensitivity, caus-
ing the accumulation of branched-chain amino acids in seeds
(Dyer et al. 1993; Eberlein et al., 1999; Park et al. 2004). Those indi-
viduals germinating at 13.2 C could represent the ALS-inhibitor-
resistant fraction displaying a mutated proline 197 residue.
Ongoing research efforts are aimed at validating this hypothe
sis, as well as determining smallflower umbrella sedge germin
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Figure 3. Thermal-time model germination curves for smallflower umbrella sedge across four constant temperature regimes at 0 MPa, expressed in Cd. Cumulative observed
(symbols) and predicted (dotted line) germination are plotted over thermal units calculated according to parameters in Table 1 and equation 4. Cd, degree-days; GDD, growing
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ation and emergence time courses in the field to assess pote
ntial differences among ALS-inhibitor-resistant and —susceptible
populations.
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