

Research Article

Cite this article: Pedroso RM, Neto DD, Filho RV, Fischer AJ, Al-Khatib K (2019) Modeling germination of smallflower umbrella sedge (*Cyperus difformis* L.) seeds from rice fields in California across suboptimal temperatures. *Weed Technol.* doi: [10.1017/wet.2019.52](https://doi.org/10.1017/wet.2019.52)

Received: 23 January 2019

Revised: 24 May 2019

Accepted: 31 May 2019

Associate Editor:

Eric Webster, Louisiana State University AgCenter

Nomenclature:

smallflower umbrella sedge; *Cyperus difformis* L.; CYPDI; rice; *Oryza sativa* L.

Keywords:

Thermal-time model; probit analysis; seed germination biology; growing degree-days

Author for correspondence:

Rafael M. Pedroso, Crop Science Department, 11 Padua Dias Avenue, University of Sao Paulo (ESALQ/USP), Piracicaba, Sao Paulo, Brazil, 13418-900. (Email: rmpedroso@usp.br)

Modeling germination of smallflower umbrella sedge (*Cyperus difformis* L.) seeds from rice fields in California across suboptimal temperatures

Rafael M. Pedroso¹, Durval D. Neto², Ricardo Victoria Filho², Albert J. Fischer³ and Kassim Al-Khatib³ AQ1

¹Graduate Student, Department of Plant Sciences, University of California, Davis, Davis, CA, USA; ²Professor, Crop Science Department, University of Sao Paulo (ESALQ/USP), Sao Paulo, Brazil and ³Professor, Department of Plant Sciences, University of California, Davis, Davis, CA, USA 6

Abstract

Smallflower umbrella sedge is a prolific C₃ weed commonly found in rice fields in 47 countries. The increasing infestation of herbicide-resistant smallflower umbrella sedge populations threatens rice production. Our objectives for this study were to characterize thermal requirements for germination of smallflower umbrella sedge seeds from rice fields in California and to parameterize a population thermal-time model for smallflower umbrella sedge germination. Because the use of modeling techniques is hampered by the lack of thermal-time model parameters for smallflower umbrella sedge seed germination, trials were carried out by placing field-collected seeds in a thermogradient table set at constant temperatures of 11.7 to 41.7 C. Germination was assessed daily for 30 d, and the whole experiment was repeated a month later. Using probit regression analysis, thermal time to median germination [$\theta_{T(50)}$], base temperature for germination (T_b), and SD of thermal times for germination [$\sigma_{\theta T(50)}$] were estimated from germination data, and model parameters were derived using the Solver tool in Microsoft Excel®. Germination rates increased linearly below the estimated optimum temperatures of 33.5 to 36 C. Estimated T_b averaged 16.7 C, whereas $\theta_{T(50)}$ equaled 17.1 degree-days and $\sigma_{\theta T(50)}$ was only 0.1 degree-day. The estimated T_b for smallflower umbrella sedge is remarkably higher than that of *japonica* and *indica* types of rice, as well as T_b of important weeds in the *Echinochloa* complex. Relative to the latter, smallflower umbrella sedge has lower thermal-time requirements to germination and greater germination synchronicity. However, it would also initiate germination much later because of its higher T_b , given low soil temperatures early in the rice growing season in California. When integrated into weed growth models, these results might help optimize the timing and efficacy of smallflower umbrella sedge control measures.

Introduction

Smallflower umbrella sedge is a prolific C₃ weed and a major competitor of rice in 47 countries, ranging from tropical to warm temperate regions. Smallflower umbrella sedge can cause up to 50% rice yield losses (Sanders 1994). In the early 1990s, smallflower umbrella sedge management was complicated by the evolution of resistance to acetolactate synthase (ALS)-inhibiting herbicides; ALS-resistant smallflower umbrella sedge currently infests rice fields in eight countries (Heap 2019). More recently, ALS-inhibitor-resistant populations from rice fields in California evolved resistance to the photosystem II-inhibitor propanil due to a D1 Val-₂₁₉-Ile mutation, the first instance of smallflower umbrella sedge resistance to a site of action other than the ALS enzyme (Pedroso et al. 2016). Such findings highlight the need for innovative tools for improved smallflower umbrella sedge control.

Knowledge of weed seed germination biology and crop-weed interactions can enhance the effectiveness of weed control methods through better understanding of the timing of weed and crop emergence, which, in turn, is critical for the outcome of weed-related yield losses (Boddy et al. 2012; Chauhan and Johnson 2009). However, contradictory results have been reported for smallflower umbrella sedge. Ismail et al. (2007) obtained maximum germination less than 50%, whereas other studies reported germination levels of 83% (Chauhan and Johnson 2009; Derakhshan and Gherekhloo 2013; Kim and Mercado 1987), which could not be clearly attributed to different genotypes tested or methodologies used for seed germination.

Temperature is the single most important factor regulating germination of nondormant weed seeds in irrigated annual agroecosystems at the beginning of the growing season (Garcia-Huidobro et al. 1982). When seed populations are subjected to temperature gradients, physiologically meaningful parameters can be estimated and used to successfully predict weed

55 seed germination, using population-based threshold models
 56 (Bradford 2002; Forcella et al. 2000). Among these, the thermal-
 57 time model describes germination time courses as a function of
 58 the accumulation of temperature (T) in excess of a threshold or
 59 base temperature (T_b) below which phenological development
 60 ceases, multiplied by the time to germination (t_g) required by
 61 fraction or percentage g of the population (Bewick et al. 1988;
 62 Satorre et al. 1985). In addition to T_b , two other cardinal
 63 temperatures define the suitable range for seed germination in a
 64 given species: optimum temperature (T_o) and ceiling temperature
 65 (T_c). T_o is defined as the T that maximizes the germination rate
 66 (GR_g) for a given percentage or fraction g of the seed population,
 67 whereas T_c is the highest T at which germination can occur for a
 68 given species (Forcella et al. 2000).

69 Germination under suboptimum temperatures can be
 70 described on the basis of accumulated heat units above T_b , yielding
 71 the thermal time constant, $\theta_T(g)$, calculated using the following
 72 equation:

$$\theta_T(g) = (T - T_b)t_g \quad (1)$$

73 which is the thermal time expressed in units such as growing
 74 degree-days (Cd) needed to complete the germination of fraction
 75 g of the seed population (Bradford 1990). GR_g is the inverse of t_g for
 76 a given fraction g of the seed population, and constitutes a linear
 77 function of T above T_b :

$$GR_g = 1/t_g = (T - T_b)/\theta_T(g) \quad (2)$$

78 Given that $\theta_T(g)$ in equation 1 is assumed to follow a normal
 79 distribution, parameters for the thermal-time model can be esti-
 80 mated from germination data using probit regression analysis
 81 (Boddy et al. 2012):

$$probit(g) = \{ [\log(T - T_b)t_g] - \log\theta_T(50) \} \sigma_{\theta_T} \quad (3)$$

82 where $probit(g)$ is the probit transformation of cumulative ger-
 83 mination percentage that linearizes its cumulative normal distribu-
 84 tion on a logarithmic scale; $\theta_T(50)$ is thermal time for median
 85 germination; and σ_{θ_T} is the SD in log thermal times to germination
 86 among individual seeds in the population.

87 The thermal-time model is thus based on the accumulation of
 88 temperature over time and is appropriate for predictions of plant
 89 development (Bradford 2002). Derakhshan and Gherekhloo
 90 (2013) reported cardinal temperatures for germination of a
 91 smallflower umbrella sedge population from Iranian fields.
 92 However, important model parameters such as $\theta_T(50)$ and median
 93 thermal-time distribution, $\sigma_{\theta_T(50)}$, needed for integration into
 94 more complex growth models, are still lacking in the literature.
 95 Moreover, germination parameters may differ among ecotypes
 96 from different regions within the same species. It is thus necessary
 97 to conduct germination tests using local genotypes as the seed
 98 source to better predict weed seed germination and emergence
 99 at a regional level (Ellis and Butcher 1988).

100 Our primary objectives for this study were to characterize
 101 thermal requirements for germination of smallflower umbrella
 102 sedge seeds from rice fields in California, and to parameterize a
 103 population thermal time model for smallflower umbrella sedge
 104 germination.

Material and Methods

105

Smallflower umbrella sedge seeds were collected from 15 rice fields 106
 throughout California's Northern Sacramento Valley (39°27'N; 107
 121°48'W). Ten plants were randomly selected per rice field, 108
 and seeds were cleaned and dry stored at 7 C until used in germi- 109
 nation tests. Whole-plant assays conducted using bensulfuron- 110
 methyl demonstrated that the seed set comprised mostly 111
 ALS-inhibitor resistant seeds (data not shown). Before germina- 112
 tion tests, seeds were placed in containers filled with de-ionized 113
 water and stored under dark conditions at 10 C for 2 months to 114
 break dormancy by simulating overwintering conditions in 115
 California rice fields (Baskin and Baskin 2001; Boddy et al. 116
 2012). The cold-stratification procedure was repeated a month 117
 later for a second run of germination tests, allowing for the analysis 118
 of germination times as displayed by the nondormant fraction of 119
 the seed population. 120

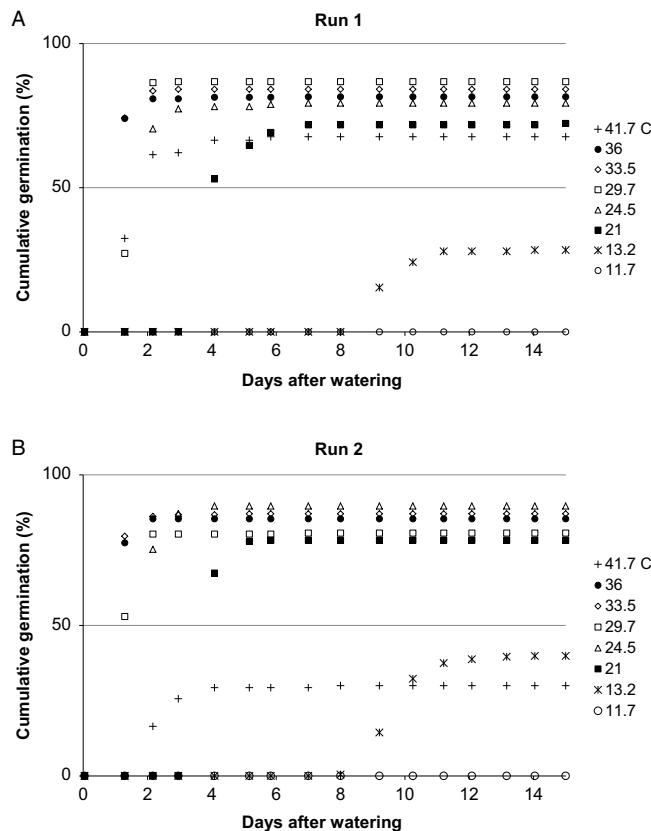
Germination tests were carried out on a one-dimensional 121
 thermogradient table set at constant temperatures of 11.7, 13.2, 122
 21.0, 24.5, 29.7, 33.5, 36.0, and 41.7 C, using a Conviron® 123
 CMP3244 unit (Controlled Environments Inc., Temecula, CA) 124
 as a heater and a VWR® Scientific 1171MD refrigerated chiller 125
 (VWR Scientific Products, Tempe, AZ). Approximately 50 seeds 126
 were placed in 3.5-cm-diameter petri dishes with two Whatman 127
 No. 1 filter paper discs. Approximately 2.0 mL of de-ionized 128
 water were added to each petri dish for filter paper saturation. 129
 The dish was then held on its side to drain excess water and avoid 130
 formation of a film of water around the seeds, thereby providing 131
 an aerobic environment for seed germination. Dishes were fitted 132
 with covers and sealed with Parafilm (Bemis Company, Inc. 133
 Neenah, WI) to prevent evaporation. Under fluorescent lights, 134
 seeds were exposed to a 14-h photoperiod at 18 $\mu\text{mol m}^{-2} \text{s}^{-1}$ 135
 photosynthetic photon-flux density, an appropriate level for seed 136
 germination studies (Baskin and Baskin 2001). Three replicate 137
 dishes containing 50 seeds each were placed within each iso- 138
 thermal lane on the thermogradient table. Because of their 139
 minute size, seeds were viewed under a microscope at $\times 10$ 140
 magnification. Coleoptile protrusion of 0.5 mm was used as 141
 the germination criterion. Germinated seeds were counted and 142
 removed every 24 h over 30 d; water in dishes was replenished 143
 whenever needed, using isothermal water kept within each tem- 144
 perature lane for this purpose. It was assumed that 30 d was suf- 145
 ficient time for nondormant seeds to germinate. 146

The probit regression analysis shown in equation 3 was used to 147
 estimate thermal-time model parameters from the pool of 148
 observed germination data collected at the suboptimal temperature 149
 range of 21 to 33.5 C, given that such suboptimal incubation 150
 temperatures allowed for final germination greater than 50%, as 151
 required (Bradford 1990). Three sets of model parameters were 152
 derived by replication using the Solver tool in Microsoft Excel® 153
 (Microsoft Corp., Redmond, WA) to minimize the root-mean- 154
 square error between observed and simulated germination data 155
 (Huarte and Benech-Arnold 2010). Model parameters were 156
 subjected to ANOVA after Box-Cox transformation to meet 157
 assumptions (JMP 8.0 software; SAS Institute, Inc., Cary, NC), 158
 and comparisons were made across both germination trials. 159
 Using these parameters, the original germination time courses 160
 were reproduced as cumulative normal curves of the following 161
 function:

$$G = [\log t_g - (\log \theta_T(50) - \log(T - T_b))] \sigma_{\theta_T} \quad (4)$$

Table 1. Final smallflower umbrella sedge seed germination.

Parameter ^a	Run 1	Run 2	P value ^b
Final G, % \pm SE ^c	82.2 \pm 1.3	85.4 \pm 1.7	0.1511
T_b , °C \pm SE ^d	16.72 \pm 0.48	16.63 \pm 0.36	0.8898
$\theta_{T(50)}$, Cd \pm SE ^{d,e}	17.09 \pm 0.7	16.03 \pm 0.9	0.4114
$\sigma_{\theta T(50)}$, Cd \pm SE ^d	0.101 \pm 0.04	0.102 \pm 0.02	0.9871


^aAbbreviations: $\theta_{T(50)}$, SD in thermal time within the seed population; $\sigma_{\theta T(50)}$, thermal time constant to median germination; Cd, degree-days; G, germination percentage; T_b , base temperature.

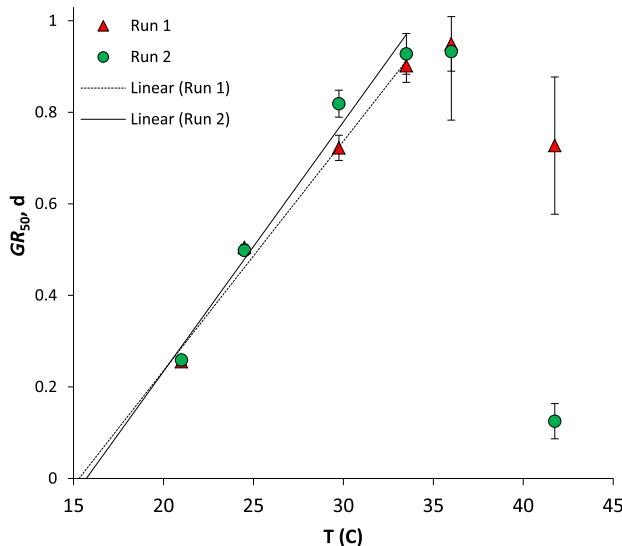
^bP values were obtained following ANOVA on each parameter at an α level of 0.05; n = 30. None was statistically significant.

^cAverage percentage of total germinated seeds placed at temperatures between 21 °C and 33.5 °C.

^dParameters are derived from equation 3.

^e $\theta_{T(50)}$ is presented as $10^3 T(50)$.

Figure 1. Cumulative percentage of smallflower umbrella sedge germination plotted over days after seeding. Data points are averages based on three replicates of approximately 50 seeds each. Assessments were performed for 30 d. (A) First run of germination experiments. (B) Second run of germination, performed 1 month after run 1.


163 where G is cumulative germination percentage (Bradford 1990).
 164 Time (in days) to median germination (t_{50}) was estimated by non-
 165 linear regression analysis using the NLIN procedure in SAS
 166 (Steinmaus et al. 2000). GR_{50} , median germination rates calculated
 167 as $1/t_{50}$ and expressed in days, were estimated for each incubation
 168 temperature and germination test. GR_{50} values were plotted against
 169 test temperatures to estimate T_o (Boddy et al. 2012). Data are
 170 reported as mean \pm SE.

171 Results and Discussion

172 Smallflower umbrella sedge seed viability was high throughout
 173 both runs of germination tests (Table 1). Final germination per-
 174 centages for test temperatures between 21.0 °C and 36.0 °C were sim-
 175 ilar across experiments and averaged 82.0% \pm 1.3% and 85.4% \pm

176 1.7% for the first and second runs, respectively, suggesting that sig-
 177 nificant primary dormancy was either not present or had been sub-
 178 stantially removed from the seed set during the stratification
 179 period. These results agree with findings by Chauhan and
 180 Johnson (2009), Derakhshan and Gherekhloo (2013), and Kim
 181 and Mercado (1987), despite the use of nonstratified seeds in ger-
 182 mination tests carried out by those authors.

183 Seed germination did not take place at 11.7 °C regardless of trial run
 184 (Figure 1). GR_{50} increased linearly until 33.5 °C (Figure 2), suggesting
 185 data collected at temperatures of 36.0 °C or higher were in the supra-
 186 optimal range and are inadequate for developing models to predict
 187 germination based on thermal-time accumulation (Steinmaus et al.
 188 2000). These results agree with previous findings that smallflower
 189 umbrella sedge germination is favored by temperatures higher than
 190 25 °C (Chauhan and Johnson 2009; Derakhshan and Gherekhloo

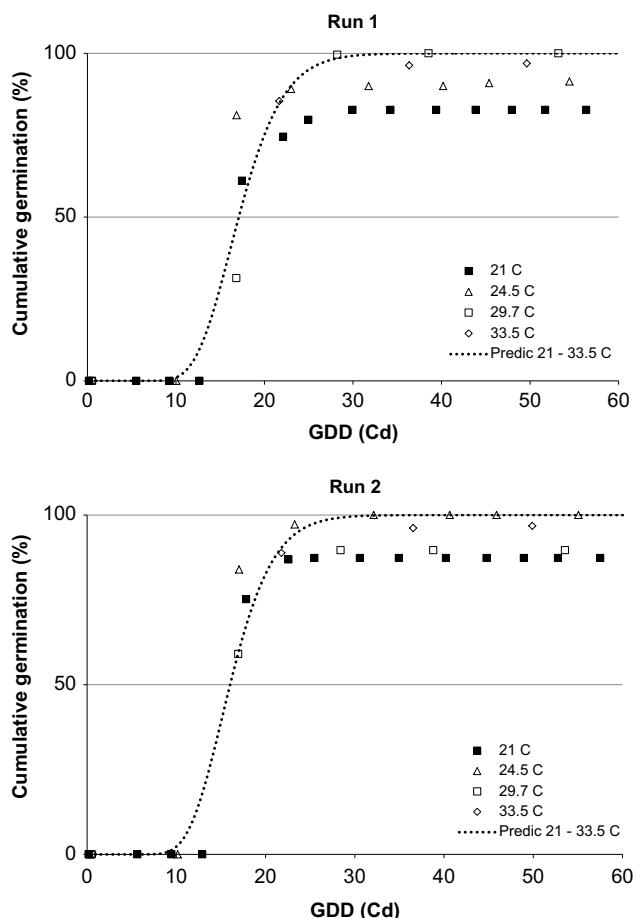
Figure 2. Median germination rates (days) for smallflower umbrella sedge across temperatures of 21 to 41.75 C. Bars represent SE based on three replicates of approximately 50 seeds. $R^2 > 0.95$ for both lines. GR_{50} , median germination rate; T, temperature.

Table 2. Base temperature for germination of smallflower umbrella sedge and other weedy species in rice, as well as *indica* and *japonica* type rice, according to studies in the literature.

Species	T _b (\pm SE) ^a	Study (year)
<i>Cyperus diffiformis</i>	16.67 \pm 0.4	Present study.
<i>Echinochloa phyllopogon</i>	9.27 \pm 0.3	Body et al. (2012)
<i>E. crus-galli</i>	12.99 \pm 1.3	Steinmaus et al. (2000)
<i>Oryza sativa</i> ssp. <i>indica</i>	13.02 \pm 0.4	Ali et al. (2006)
<i>O. sativa</i> ssp. <i>japonica</i>	10 ^b	Lee (2001)

^aAbbreviation: T_b, base temperature.

^bEstimated from preliminary germination results; SE values not available.


191 2013; Ismail et al. 2007). There was thermo-inhibition of germination
192 at 41.7 C (Figure 1). A ceiling temperature could not be determined,
193 because germination occurred even at the highest incubation
194 temperature.

195 The thermal-time model parameters T_b, $\theta_T(50)$, and $\sigma_{\theta_T(50)}$ did
196 not differ across trial runs (Table 1); T_b averaged 16.67 C. This
197 value is slightly higher than that reported by Derakhshan and
198 Gherekhloo (2013), which could be related to the model presented
199 in this work being developed using a wider range of test temper-
200 atures (Bradford 2002). Variations within a species due to genetic
201 diversity of ecotypes from separate geographic regions can also be
202 expected (Baskin and Baskin 2001). Smallflower umbrella
203 sedge $\theta_T(50)$ averaged 16.55 ± 0.7 Cd, which is nearly half the
204 $\theta_T(50)$ estimated for another troublesome rice weed, late water-
205 grass [*Echinochloa oryzicola* (Vasinger) Vasinger] (Body et al.
206 2012). Thermal-time model parameters were used in conjunction
207 with equation 4 to reproduce the original germination time courses
208 plotted against thermal units (Figure 3). Prediction lines fit
209 observed germination and fitting errors were minimized; root-
210 mean-square error values generated during T_b determination were
211 0.031 and 0.038, an indication of the model's goodness of fit
212 (Mayer and Butler 1993; Spokas and Forcella 2006). Most small-
213 flower umbrella sedge seeds germinate by 25 Cd (Figure 3). The
214 SD in $\sigma_{\theta_T(50)}$ averaged 0.1 Cd, indicating synchronous seed ger-
215 nation, as indicated by the steep slopes in Figure 3. In comparison,
216 $\sigma_{\theta_T(50)}$ calculated for late watergrass averaged 1.25 Cd.

Synchronous smallflower umbrella sedge seed germination 217 constitutes a very desirable trait from a weed-control point of view 218 because it is correlated with more uniform seedling emergence 219 (Forcella et al. 2000), which, in turn, could benefit its control using 220 POST herbicides. Moreover, results also indicate that primary seed 221 dormancy is not present in this species, which is corroborated by 222 findings reported in the literature (Chauhan and Johnson 2009; 223 Derakhshan and Gherekhloo 2013; Kim and Mercado 1987). 224 This is also desirable from a modeling standpoint, because 225 progressive dormancy alleviation could lead to multiple germina- 226 tion and seedling emergence fluxes (Body et al. 2012). 227

Thermal-time model parameters presented in this study are 228 expected to aid in conceptualizing smallflower umbrella sedge 229 management tactics in Californian rice fields. Depending on rice 230 seeding date, smallflower umbrella sedge could initiate germina- 231 tion later than rice and some of its key weedy competitors, due 232 to its higher T_b values (Table 2). In Colusa County, a major 233 rice-growing area in California, if rice is seeded in mid-April when 234 soil temperatures average 18 C (UC IPM 2013), models indicate 235 smallflower umbrella sedge germination is completed within 7 236 d, longer than the 4.5 d needed for late watergrass germination 237 in such conditions. However, if rice is sown 20 d later at optimum 238 seeding date, warmer temperatures would mean germination of 239 both weed species would require only 4 d to be completed. 240

A small fraction of the seed set was able to germinate at 13.2 C in 241 both experiments (Figure 1), which is below the calculated T_b 242 values. This outcome suggests the presence of different T_b values 243 among certain fractions of the seed set, which mostly comprised 244 ALS-inhibitor-resistant individuals. Mutations at the proline 245 197 residue within the ALS enzyme endowing resistance to ALS 246 inhibitors have been associated with altered germination at low 247 temperatures, due to an altered enzyme feedback sensitivity, caus- 248 ing the accumulation of branched-chain amino acids in seeds 249 (Dyer et al. 1993; Eberlein et al., 1999; Park et al. 2004). Those 250 individuals germinating at 13.2 C could represent the ALS-inhibitor- 251 resistant fraction displaying a mutated proline 197 residue. 252 Ongoing research efforts are aimed at validating this hypothe- 253 sis, as well as determining smallflower umbrella sedge germin- 254

Figure 3. Thermal-time model germination curves for smallflower umbrella sedge across four constant temperature regimes at 0 MPa, expressed in Cd. Cumulative observed (symbols) and predicted (dotted line) germination are plotted over thermal units calculated according to parameters in Table 1 and equation 4. Cd, degree-days; GDD, growing degree-days; predic, predicted.

255 ation and emergence time courses in the field to assess pote
256 ntial differences among ALS-inhibitor-resistant and -susceptible
257 populations.

258 **Author ORCIDs.** Rafael M Pedroso <https://orcid.org/0000-0002-7611-6750>

259 **Acknowledgments.** The authors would like to thank Dr. Chris van Kessel, Dr.
260 Bruce Linquist, and Dr. Mark Lundy for their help and support, and thank staff
261 and field personnel from the California Rice Experiment Station, Biggs, CA.
262 This research project was partly funded by grants provided by the California
263 Rice Research Station and the Californian Weed Science Society. No conflicts
264 of interest have been declared.

265 References

266 Ali MG, Naylor REL, Matthews S (2006) Distinguishing the effects of genotype and
267 seed physiological age on low temperature tolerance of rice (*Oryza sativa L.*).
268 *Exp Agric* 7:337–349

269 Baskin CC, Baskin JM (2001) Seeds: Ecology, Biogeography, and Evolution of
270 Dormancy and Germination. 2nd edn. Cambridge, MA: Academic Press

271 Bewick TA, Binning LK, Yandell B (1988) A degree-day model for predicting
272 the emergence of swamp dodder in cranberry. *J Am Soc Hortic Sci* 113:839–
273 841

274 Boddy LG, Bradford KJ, Fischer AJ (2012) Population-based threshold models
275 describe weed germination and emergence patterns across varying temper-
276 ature, moisture and oxygen conditions. *J Appl Ecol* 49:1225–1236

277 Bradford KJ (1990) A water relations analysis of seed-germination rates. *Plant*
278 *Physiol* 94:840–849

Bradford KJ (2002) Applications of hydrothermal time to quantifying and mod- 279
eling seed germination and dormancy. *Weed Sci* 50:248–260 280

Chauhan BS, Johnson DE (2009) Ecological studies on *Cyperus difformis*, 281
Cyperus iria and *Fimbristylis miliacea*: three troublesome annual sedge weeds 282
of rice. *Ann Appl Biol* 155:103–112 283

Derakhshan A, Gherekhloo J (2013) Factors affecting *Cyperus difformis* seed 284
germination and seedling emergence. *Planta Daninha* 31:823–832 285

Dyer WE, Chee PW, Fay PK (1993) Rapid germination of sulfonylurea resistant 286
Kochia scoparia L. accessions is associated with elevated seed levels of 287
branched-chain amino-acids. *Weed Sci* 41:18–22 288

Eberlein CV, Guttieri MJ, Berger PH, Fellman JK, Mallory-Smith CA, Thill DC, 289
Baerg RJ, Belknap WR (1999) Physiological consequences of mutation for 290
ALS-inhibitor resistance. *Weed Sci* 47:383–392 291

Ellis RH, Butcher PD (1988) The effects of priming and natural differences in 292
quality amongst onion seed lots on the response of the rate of germination to 293
temperature and the identification of the characteristics under genotypic 294
control. *J Exp Botany* 39:35–950 295

Forcella F, Arnold RLB, Sanchez R, Ghersa C (2000) Modeling seedling emer- 296
gence. *Field Crops Res* 67:123–139 297

Garcia-Huidobro J, Monteith JL, Squire GR (1982) Time, temperature and ger- 298
mination of pearl millet (*Pennisetum typhoides*). 1. Constant temperature. *J* 299
Exp Bot 33:288–296 300

Heap I (2019) The International Survey of Herbicide Resistant Weeds. <http://www.weedscience.org>. Accessed: January 5, 2019 301

Huarte HR, Benech-Arnold RL (2010) Hormonal nature of seed responses to 303
fluctuating temperatures in *Cynara cardunculus* (L.). *Seed Sci Res* 20:39–45 304

Ismail BS, Mansor N, Rahman MM (2007) Factors affecting germination and 305
emergence of *Cyperus difformis* L. seeds. *Malaysian Appl Biol* 36:41–45 306

307 Kim JS, Mercado BL (1987) Viability and emergence of buried seeds of 321
308 *Echinochloa glabrescens*, *Monochoria vaginalis* and *Cyperus difformis*. 322
309 Proc 11th Asian Pacific Weed Sci Soc 9:469–476 323
310 Lee MH (2001) Low temperature tolerance in rice: the Korean experience. Pages 324
311 109–117 in Fukai S, Basnayake J, eds. *ACIAR Proceedings 101; Increased 325*
312 *Lowland Rice Production in the Mekong Region*. Canberra, ACT, Australia: 326
313 Australian Center for International Agricultural Research 327
314 Mayer DG, Butler DG (1993) Statistical validation. *Ecol Model* 68:21–32. 328
315 Park K, Mallory-Smith CA, Ball DA, Mueller Warrant, GW (2004) Ecological 329
316 fitness of acetolactate synthase inhibitor-resistant and-susceptible downy 330
317 brome (*Bromus tectorum*) biotypes. *Weed Sci* 52:768–773 331
318 Pedroso RM, Al-Khatib K, Alarcón-Reverte R, Fischer AJ (2016) A *psbA* muta- 332
319 tion (Val219 to Ile) causes resistance to propanil and increased susceptibility 333
320 to bentazon in *Cyperus difformis*. *Pest Manag Sci* 72:1673–1680

Sanders BA (1994) The life cycle and ecology of *Cyperus difformis* (rice weed) in 321
temperate Australia: a review. *Aust J Exp Agri* 34:1031–1038 322
Satorre EH, Ghersa CM, Pataro AM (1985) Prediction of *Sorghum halepense* 323
(L.) Pers rhizome sprout emergence in relation to air-temperature. *Weed 324*
Res 25:103–109 325
Spokas K, Forcella F (2006) Estimating hourly incoming solar radiation from 326
limited meteorological data. *Weed Sci* 54:182–189 327
Steinmaus SJ, Prather TS, Holt JS (2000) Estimation of base temperatures for 328
nine weed species. *J Exp Bot* 51:275–286 329
[UC IPM] University of California Agriculture and Natural Resources Statewide 330
Integrated Pest Management Program (2013) Weather, models, & degree-days. 331
<http://www.ipm.ucdavis.edu/WEATHER/index.html> Accessed: December 5, 332
2018 333