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meteorology, public health, epidemiology, and others. Analyses using aggregated data lead to distorted
conclusions since they disregard local patterns, and such a problem has motivated different approaches for
reconstructing the information in a finer resolution from the aggregated data. However, most existing methods
focus on the particular case where the volume of data does not exceed the amount of memory available for
computations, a situation that has become increasingly less frequent with the fast pace of data generation
nowadays. In practice, this problem limits either spatial resolution or coverage of applications, thus precluding
their use in a more general context. In this paper, we address the problem of disaggregation of spatial data
with huge datasets by proposing a scalable method to estimate the parameters of a well-established model. We
propose an iterative scheme for model estimation and prove its convergence to a critical point of the likelihood
function derived. To test the method, we provide a controlled simulation and a real example for sugarcane
production in Brazil. In the simulation, the results indicate a successful reconstruction of 1 million pixels
from 90 block areas. In the real example, the results had a compatible match with the agronomic literature,
indicating a reasonable prediction of sugarcane production in a 100 m spatial resolution (i.e., approx. 5x 10%
pixels) from 5,565 block-areas. Compared to the most similar previous work, scalability allowed us to use a
nearly 100 times higher resolution, which corresponds to 10,000 times more pixels. With our methods, we
expect to assist researchers from different fields in disaggregating spatial information to larger areas or higher
resolutions.

1. Introduction

Analyzing spatial data poses significant challenges by nature. While
the geographical space and several processes are continuous, numerous
datasets represent only a summarizing function (e.g., the sum or the
average) of these underlying processes over large areas that partition
the space. The definition of boundaries depends on the problem under
consideration, with census data being likely the most common set-
ting. In this case, the administrative frontiers of a district, state, or
country (Hawley and Moellering, 2005; Buchin et al., 2012) delimit
the areas, such as in the county-level public health data of Goovaerts
(2006). However, other partitions can also be used, such as farm
boundaries in soil science (Orton et al., 2012), a coarse-scale grid in
meteorology (Park, 2013), and others. The procedure of converting
data from a finer to a coarser resolution is called aggregation, and the
collection of aggregated data can be motivated by technical, adminis-
trative, and other reasons (Steinbuch et al., 2019). It has, for example,
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the advantage of being cheaper and ensuring anonymity (Armstrong
et al., 1999).

Despite the benefits during data collection, the aggregation proce-
dure can potentially mislead the results of analyses. For example, in
the 1970s, Openshaw and Taylor (1979) found that the relationship
between two variables could change not only when they were aggre-
gated but also when different boundaries were used to partition the
space. Such a result coined the term modifiable areal unit problem
(MAUP), which became later a well-known limitation for the analysis
of aggregated data (Wong, 2009). A similar effect of reaching wrong
conclusions about individual characteristics from grouped data models
was also detected in the epidemiology field, where such a phenomenon
is called “ecological fallacy” (Piantadosi et al., 1988; Wakefield, 2005).
Besides, in some voting systems, politicians explore the aggregation
procedure’s bias by manipulating the spatial boundaries of adminis-
trative regions to favor some specific outcome in the resulting areas.
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Such a practice is known as “gerrymandering” and dates from the 19th
century (Friedman and Holden, 2008).

The potential drawbacks of conclusions taken from models for
aggregated data have motivated the search for methods to recover
the original un-clustered information from block-area observations.
Such a reverse procedure is sometimes called spatial downscaling or
disaggregation, and many applications exist in the literature of dif-
ferent disciplines, including agriculture (You and Wood, 2006), epi-
demiology (Utazi et al., 2019), pedology (Vincent et al., 2018), eco-
nomics (Monteiro et al., 2018), political science (King, 1997), disease
risk mapping (Li et al., 2012), digital soil mapping (Moller et al., 2019),
among others. In all cases, the models generate a set of information at
a higher spatial resolution from the data at a lower spatial resolution,
and the approaches vary in complexity and the assumptions made.

Several approaches to solving the disaggregation problem exist in
the literature, and they can be split into two broad categories: those
who do not make use of auxiliary data and those who do (Comber
and Zeng, 2019). On the first group, the simplest example is the area
weighting method, in which the aggregated information is distributed
to the finer scale proportionally to the size of the overlapping ar-
eas (Monteiro et al.,, 2018). Such a method implicitly assumes that
the variable is homogeneously distributed, which might be unlikely in
most settings. Also on the first group, the pycnophylatic algorithm (To-
bler, 1979) generates a smooth surface on the finer resolution by: (i)
iteratively calculating the value on a pixel from the value of its neigh-
bors; and (ii) ensuring so-called ‘mass-preserving’ property, where the
reaggregation of the finer level data reproduces the observed coarse-
level information. In the pycnophylatic method, the assumption of a
continuous surface for the target level might not be suitable in some
situations where discontinuities such as rivers, roads, or waterbodies
divide the landscape (Comber and Zeng, 2019).

The second category of methods relies on incorporating external
information to explain the distribution of the variable at the disaggre-
gated level. They emerged as a possible alternative to inconsistencies
that may appear when using methods from the first category, such as
the estimation of a population value in uninhabited regions (Comber
and Zeng, 2019). A wide variety of existing methods fall under this
category, and a review can be found in Comber and Zeng (2019)
and Monteiro et al. (2018). The subcategory of statistical and geosta-
tistical methods has recently attracted increasing attention. In these
cases, ancillary data is combined with statistical techniques to extract
relationships between the fine and coarse-level data, and the spatial
autocorrelation can be taken into account during the modeling pro-
cess. Applications of such methods can now be found in different
fields of knowledge, such as species distribution modeling (Niamir
et al., 2011; Keil et al., 2012; Barwell et al., 2014), disease risk map-
ping (Sturrock et al., 2014; Weiss et al., 2019), climate sciences (Poggio
and Gimona, 2015), hydrology (Wang et al., 2020) and others. Stur-
rock et al. (2014), for example, used a hierarchical Bayesian model
to disaggregate Malaria incidence to a 1 x 1 km spatial grid using
several satellite-derived variables, land cover, and distance to rivers
as auxiliary information. Even without taking spatial autocorrelation
into account, a validation procedure showed that the model correctly
indicated zero incidences in 84 out of the 101 observed facilities at
the finer level. In one significant methodological advance, Utazi et al.
(2019) incorporated the spatial dependence into the linear predictor
of a hierarchical model. The authors developed a controlled simulated
example, and based on the good results (i.e., correlation with the true
data varying from 0.66 to 0.98 at the finer level), they disaggregated
vaccination coverage of measles and diphtheria-tetanus-pertussis for
Afghanistan and Pakistan at a 5 x 5 km pixel level.

Actual applications may be interested on large spatial domains, fine
spatial resolutions, or both. In these cases, as noted by Li et al. (2012),
the complexity of the problems implies computationally demanding
and memory-intensive calculations, especially when the spatial correla-
tion is strong. For some problems, such computational costs may even
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be prohibitive. A common point among existing approaches is that they
focus on the particular case where the volume of data can be hold in
a computer’s memory. To the best of our knowledge, the problem of
disaggregating datasets that are too big for a computer’s memory re-
mains unexplored. Nowadays, it is well recognized that the generation
of spatial data has been increasing quickly, generating new challenges
and demanding advances in methods for analysis and prediction (Tang,
2020). This means that most existing disaggregation techniques still
limit either spatial resolution or coverage of applications. Thus, for
example, they cannot handle the use of high-resolution information
(e.g., Hengl et al. (2017), Hulley et al. (2015), Chen et al. (2015)),
which have achieved a better representation of the continuous nature
of the territory but at the cost of bigger and more computationally
demanding datasets (Lasinio et al., 2012).

In this paper, we address the problem of disaggregating spatial
data with huge datasets. Our contribution consists of proposing a
method to estimate the parameters of a disaggregation model when
the amount of information at the fine scale exceeds the computer’s
memory. Hereinafter, we refer to such method property as ‘scalabil-
ity’ (Wang et al., 2016). First, we show the existing regression model at
the disaggregated level and describe how its characteristics cover many
practical applications. Next, we propose an iterative parallel method
to estimate its parameters from the aggregated data and prove the
convergence to a critical point of the objective function derived. The
method is based on dividing the huge dataset into smaller chunks that
can be efficiently processed in parallel, a technique known as domain
decomposition (Armstrong and Densham, 1992). To test the method,
we set up a simulation study to reconstruct 10° pixels from 90 areas
and compare the functions estimated with those used to generate the
data. We also apply the method for the real example of sugarcane
production in Brazil, where we reconstruct a 100 m raster (approx.
5 x 108 pixels) from 5,565 areas using auxiliary data such as remotely
sensed land cover, soil characteristics, and climate information. Finally,
to check the consistency of the results obtained in the absence of
ground-truth data, we compare the functions estimated from the data
with the patterns described in the agronomic literature.

2. Methodology

The Methodology section is organized as follows. In Section 2.1, we
formalize the disaggregation problem and describe the constraints that
most practical applications face, and in Section 2.2, we describe the
proposed solution in three parts.

First, in Section 2.2.1, we describe the existing model at the dis-
aggregated level, derive an objective function for the estimation of its
parameters at the aggregated level, and present an iterative method for
optimizing the objective function based on the Laplace method. Second,
in Section 2.2.2, we show how the proposed model relates to the
constraints described in Section 2.1, accounting for smooth functions
of explanatory variables and recent advances to make spatial and spa-
tiotemporal modeling computationally feasible. This subsection shows
how model calculations can be performed in a completely parallel
setting and refer to a mathematical proof of convergence (Appendix).
Third, in Section 2.2.3, we show how to exploit the matrices’ structure
to improve the method’s practical implementation.

Then, Section 2.2.2 provides further implementation details, and
Section 2.3 and Section 2.4 present the case studies.

2.1. Problem description

Lety = [¥11: Y120 > Yiny» Y210 Y220 s Yonyo - s YN YN 25 -+ syN,nN]T
denote the nx 1 (where n = n; +n, + --- + ny) vector of the unobserved
outcome y; ; at the jth pixel belonging to block area i (i = 1,2,..., N).
What we observe is Y = h(y) = [V}, Y5, ..., Yy]T, the aggregation of y
into N block areas. The problem is to find y; ; respecting the following
constraints:
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[y

. all y; ; are constrained to some interval, i.e., a <y;; <b, Vi,j,
a,b eR;

2. y is a (possibly non-linear) function of one or more (i.e., m)
explanatory variables x =[x, x,, ... ,xm]T;

3. y is potentially spatially-correlated, i.e., closer pixels are more
likely to have similar values than farther pixels;

4. the aggregation constraint is at least nearly respected (i.e., Y =~
h(y));

5. the approach needs necessarily to be scalable, as » can be huge.

2.2. Proposed solution

2.2.1. The model and estimation
We consider the non-linear mixed model at the disaggregated level:

y=gXp) +e, € ~ N(0,I6?), @

where g is a non-linear differentiable and invertible link function,
X is a n x k model matrix constructed from the explanatory vari-
ables (i.e., x) at the pixel level, B = [#,,f,,... f;]" are the normally-
distributed parameters with mean 0 and positive semidefinite variance—
covariance matrix Q; which may depend on some parameters A, and
€ = [e),6,... ,e,,]T are the normally-distributed residuals with mean 0
and variance—covariance matrix ¢2I. Through the text, we denote the
generalized inverse of Q, as Q7.

Next, we follow Proietti (2006) and denote the aggregation proce-
dure in matrix notation as:

ﬁ ~ N.(O, Q),),

Y = Ay = Ag(Xp) + Ae

where A is a N x n sparse binary matrix that points each pixel to
a block area. This construction of A allows the incorporation of any
linear mapping, the most relevant of them being the sum, mean and
weighted mean, which cover most practical applications. Here, we
avoid unnecessary notation by making no distinctions between the
random variable and its corresponding observations.

The non-linearity introduced by the link function precludes the
derivation of a closed-form expression for p(Y) (Lindstrom and Bates,
1990). At this point, we can take advantage on the fact that the
multiplication by A is a linear operation to represent the conditional
distribution of Y given g as:

YIB~N (AgXB), AATG?), B~N(0,Q;).

Now, we could follow any of the approaches for nonlinear mixed
model estimation described by Demidenko (2013), such as two-stage
estimation, the Lindstrom-Bates estimator (Lindstrom and Bates, 1990),
and the Laplace approximation. We opt for the latter, which has the
great advantages of representing the likelihood already as a function
of the predicted random effects, and avoiding the calculation of deter-
minants for N x N matrices. Recalling that p(Y, ) = p(Y|B)p(B), and
denoting by , the mode of p(Y, f), we have:

oY) = / oY, )dp = / exp log p(Y. B)) d

~ / exp <logp<r,[91> +36- ﬁA)T%(ﬂ - im) dp

~p(Y,B,) / exp (—%(ﬂ —B)T(XTGTAT(AATG?)AG, X + Q')
X (B—PB)adp

= p(Y.By) @nt?

det(XTGTAT(AAT62)1AG, X + Q7 )1/2
()]

where B, = argmin, {(Y —AgXp)T (AATO'Z)_I (Y —Ag(Xp) + BT
Q;'g}, and G, is the Jacobian matrix, i.e., a n x n diagonal matrix
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with diag (G A) =g’ (XB,). Following Demidenko (2013), the resulting
likelihood is approximated, as we consider a quadratic expansion in
the second line, and assume that the term containing second-order
derivatives of g(Xpg) with respect to B in the third line tends to
zero. Besides, the last line comes from recognizing the integrand as a
part of a multivariate normal probability density function that must
integrate to one. The profile log-likelihood obtained with the Laplace
approximation thus becomes:

£(h o) =— % (Y - Ag (XB,)) (AAT6?) ™" (Y — Ag (XB,))
1o

2ﬁ,19;. ﬂi (3)

~ 3 logdet (AATo?) - S logdet () - 2 log (27)

1 TATAT A AT 2v—1 A A& -1
— 3 logdet (XTGJAT(AATG)!AG, X +95 ).

The standard numerical optimization for Eq. (3) would demand a
two-step procedure: (i) for an initial guess 4, calculates §, via penalized
least squares; (ii) then, with B , fixed, updates the estimates for A.
While repeating these procedures several times can be practical for
small datasets, it becomes very inefficient and even prohibitive for
larger datasets because we cannot store the matrix X nor the product
Xp when n is huge. That means that for each guess for 1, we would
have to iterate over chunks of the whole dataset several times in the
first step to solve the penalized least squares and then again in the
second step to calculate the last log-determinant term. All strategies for
nonlinear mixed models described by Demidenko (2013) would result
in this same problem. Ideally, we would prefer a more efficient method
to iterate over the whole dataset as little as possible, saving time and
computation.

To overcome this issue, we combine the Laplace approximation to
the likelihood with a first-order approximation to the nonlinear least
squares using the Levenberg—Marquardt algorithm (see Golden (2020)).
As we show next, this strategy replaces the penalized nonlinear least
squares by a problem with a closed-form solution, resulting in a much
more efficient scheme that requires only one iteration over the whole
dataset per each optimization step. This can be achieved by modifying
Eq. (3), linearizing the nonlinear least squares around some initial guess
/_3['” and avoiding large steps with a quadratic penalty for the difference
between the initial guess and the solution BW”. Here, the superscript
n denotes the iteration number, and the dependence of ,B["H] on A is
omitted to avoid clutter:

(A, 00~ — % (y — Ag (XBM]) " AGMXBM] _ AG["]XB['H']])T

x (AATGZ)’I (Y ~ Ag (Xﬁm) +AG['”XB[’” _AGM]XBMH])
Pl (BMHJ _ B[n])T <B[v+11 _ Bm)
B[

logdet (Q;) — % log (27)

(4
- % THIT o i) %logdet (AATG?)
-1

2
- % logdet (XTG"TAT(AAT6?)'AGX + Q')

where p"! is the problem-specific weight for the Levenberg-Marquardt-
type penalty term, and

_ _ _ _ _ T
"1 = argmin { (¥ - Ag (XB") + AGUXB" — AGUIXp)
s

x (AATG?) ™ (¥ - Ag (xB™)

+ AGMXp! - AG[”’]Xﬂ)

+ plm (ﬁ_B[rﬂ)T (ﬂ_BM]) +ﬁTQZIﬂ } .
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Differentiating and setting to zero, we arrive at the following closed-
form solution to update B["] at each iteration:

B = (XTGUITAT(AAT6Y) T AGIX + Q! + )™
x [XTGWTAT (AAT62)™! <Y ~Ag (XBW) + AGWXE“") + pin B“”] .
5)

Therefore, we consider the following iterative method for model
estimation:

1. First, start a vector of trial values B and the weight pll,

2. Then, repeats for = 1,2,... until the difference between
successive likelihood evaluations is small:

(a) Calculates all the necessary aggregated matrices in paral-
lel;

(b) Finds A" and &Zl”J_bylmaximizing Eq. (4) numerically,
which also returns g (Eq. (5));

(c) Updates the weight p/"! based on some rule, for example:

« If step (b) increases the likelihood, then updates
plrtll = 075" and continues
« Otherwise, sets p!"! = 2pl"l and returns to step (b);

@ n=n+1.

A more detailed explanation of how the proposed solution relates to
the constraints described in Section 2.1 follows.

2.2.2. Further details

In the present subsubsection, we describe how the well-known
formulation shown in Section 2.2.1 addresses the five constraints de-
scribed in Section 2.1. A special focus on the last one is given, since it
corresponds to the novelty of our work.

For constraint (1), we model g~!(y) instead of y at the disaggregated
level. The link function maps the possibly unbounded product between
X and its coefficients to the desired (a, b) interval. Choosing a proper
link function is a problem-specific decision, but some examples include
the identity function when y is unbounded (i.e., g~'(y) = y), the
exponential function when y is positive, or the generalized logistic
function for other intervals.

For constraint (2), we consider all the smooth functions s(x) of (a
possibly multivariate) variable x that can be represented as the product
between spline basis and coefficients and whose wiggliness can be
controlled by a quadratic penalty on these coefficients. In other words,
we focus on smoothers that can be represented as X with one or
more 48" Sp penalty terms, for some properly chosen and known model
matrix X and penalty matrix S, and unknown smoothing parameter A.
This category covers several options, including P-splines, cubic splines,
thin plate regression splines, tensor product interactions, Gaussian
Markov Random Fields, among others (Stasinopoulos et al., 2017).
The construction of proper model and penalty matrices is beyond the
scope of this work, and the reader may refer to Wood (2017) for
further methodological details. For our work, it is sufficient to note
that the quadratic term of Eq. (3) shows exactly a penalty on the
inverse of the variance-covariance matrix adopted for g in Eq. (1),
which means that we must parameterize our model so that Q; = S71.
Such a parameterization corresponds to the Bayesian interpretation of
having an informative prior distribution on the vector of coefficients,
B (Kimeldorf and Wahba, 1970; Silverman, 1985; Wood, 2017). This
view of the process allows the estimation using a likelihood approach
and as the regularization parameter pl"l approaches zero after sev-
eral iterations (Demidenko, 2013), the linearized likelihood (Eq. (4))
tends to the likelihood of a linear mixed model. This means that at
convergence, the posterior distribution of f will be approximately
Gaussian with its mean described by Eq. (5) and variance-covariance
matrix V (Eq. (6)) (Wood, 2017). We can take advantage of this result
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to generate credible intervals for the smoothers, represented here as
linear combinations of B. It is precisely this link between smoothers
and mixed-models that allows the proposed formulation to generate
nonlinear functions between the response variable and its predictors.

V= (XTGMTAT(AATA) AGIIX + Q7' + )™ ©6)

Constraint (3), i.e., representing the spatial or spatiotemporal struc-
ture of the data, is a challenging part of the disaggregation model.
Standard geostatistical approaches demand the storage and compu-
tation of dense covariance matrices (Wikle, 2010), leading to the
so-called “big n problem” (Lasinio et al., 2012). These approaches
are only adequate for applications in a small-data setting, and some
lower-dimensional approach must be used to allow the incorporation of
larger datasets. Fortunately, Eq. (1) can also be used to accommodate
structures that account for spatial and spatiotemporal variation on
the systematic part of the model (Stasinopoulos et al., 2019), which
opens up the possibility to incorporate some more computationally
attractive options such as kernel methods, stochastic partial differential
equations, splines and wavelets (Wikle, 2010; Lindgren et al., 2011;
Simpson et al., 2012). While the link between some of these approaches
may not seem straightforward at first, the work of Miller et al. (2020)
is helpful in showing how they converge with the idea presented in
Eq. (1). Thus, because the estimation method proposed is general, it
can incorporate different branches of the spatial and spatiotemporal
modeling literature.

To address constraint (4), we represent the aggregation procedure
in matrix form as a part of the model formulation. The likelihood
derived (i.e., Eq. (3)) naturally represents the error between observed
and predicted aggregated variables in its first term. One novelty of our
work is the demonstration we provide in the Appendix, which shows
that the linearization procedure of Eq. (4) is guaranteed to converge to
a critical point of the likelihood. This means that each iteration can be
seen as an improvement of our initial random guess for the coefficients.
After several steps, predicted values become closer and closer to the
aggregated data, until stagnation at convergence.

The major novelty of our work consists of addressing the compu-
tational aspect of constraint (5), allowing the estimation method to
be scaled. If no special treatment is adopted, then the storage of n-
dimensional matrices and vectors could easily cause memory problems.
To overcome this issue, we propose the generation of aggregated matri-
ces on-the-fly, which can be done by reading and storing only a part of
the X matrix at a time. This is often possible in platforms that deal with
huge datasets, and allows us to compute the N-dimensional aggregated
matrices (i.e., Ag(XB"™), AGXB"™ AAT and AGI"'X) without having
to store any of the n-dimensional matrices of the model (i.e., Ay,,,
ank’ g(XBMJ )nxl’ and GLYQn)

The technique consists of splitting the multiplication of n-dimensi-
onal matrices and vectors into independent processes that can run
concomitantly in parallel. To illustrate with the vector Ag(XB["]), what
we propose is the division of the n-dimensional vectors and matrices
into w non-overlapping n,-dimensional subsets such that Y  n, = n.
Denoting each subset with an underscore, calculation can be performed
as:

X
AgXB"™ = [A, ... Aw] || : [B"

XCD
alnl
gXy )
=[A) ... Ad] :
8(X, 8™
= AgX ") + - + AL g (X, B @

It should be clear from Eq. (7) that each of the terms in the sum-
mation can be calculated efficiently and independently, thus alleviating
the burden of performing n-dimensional products. For the other vectors,
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AGIXB"™  AAT and AG'X, the logic is analogous, and extra efficiency
can be gained by exploiting the diagonal structure of G!"! This implies
that we do not even have to store the n, X n, block G, but only
its diagonal vector. For the example of AG[”JXﬁ , we denote the
element-wise product as @ to obtain:

Gm o 0 fx

AGXB™ = [A; .. A0l 0~ o || ¢ |B™
o o GM"|x,
GllrlJX1
= [Al ...Aw] : Bm
Gy'X,,
= Alc_i[l"JX“Bl'7J + . +AwGL;”XwB[’“
= A, [diag (G) o (x,5")] +
A, [diag (G) © (X, ®)

The number of subsets, w, must be defined based on the number of
computational resources available and the size of the problem under
consideration. The use of Egs. (7) and (8) reduces the storage demand
from n-dimensional to N-dimensional matrices and vectors, which is
generally a huge gain in spatial disaggregation problems that make
problems computationally feasible.

2.2.3. Practical improvements

Even though Egs. (4)-(6) are theoretically correct, using these for-
mulas directly for numerical optimization can become expensive in
complex applications. In this section, we present some simple improve-
ments based on Wood (2017) that can simplify and stabilize these
expressions.

Let us consider first the decomposition of F-! = (AAT)"! =
LTL, which is output from the parallel calculations described in Sec-
tion 2.2.2. Since F will be diagonal with positive only elements, its
Cholesky factor L will also be a diagonal matrix, with L;; = \/1/F;;. Be-
cause L can be computed directly, a full decomposition of F is unneces-
sary and only the diagonal of F (and of L) must be stored. Then, we can
simplify part of the likelihood calculation by multiplying the other out-
puts of the parallel calculation prior to the numerical optimization: X =
L(AG"X) and ¥ = L(Y — Ag(XB") + AGIXB™ — AGIIX BT,
These products can be performed efficiently by simply multiplying each
of their columns by the diagonal of L. Now, the long log-determinant
term in Eq. (4), for example, becomes simply log det(X"X/o? + Q1.

In fact, even the multiplication of N-dimensional matrices can be
potentially costly depending on the amount of block areas. To overcome
this problem, we can take the QR decomposition of the X matrix into
the product of a Qp, orthogonal and a R, upper triangular matrix:

= QR. Because Q is orthogonal, the N-dimensional product X'X
can be replaced by the k-dimensional product RTR, and all other N-
dimensional products can be replaced analogously. If we: (i) calculate

= Q'Y and r = ||Y|| — ||Y|l, (ii) use the general property that
log det(6? - V,,,) = nlog(c?)+log det(V), and (iii) remove constant terms;
then the log-likelihood of Eq. (4) rewrites to:

Y =RB"™ 241 1

Aln+1T -1 pln+1
(A, 0% =— = _Eﬁl'ﬁl Qllﬂlnﬁ-l

1 i\ T .
+ Eprvﬂ (ﬁ[rﬁ-l] _ ﬂMJ> (ﬁmm - /3le> 9
+ 1 logdet(Q_l) -1 logdet(RTR/zr2 +Q7 - N log(az).

2 A 2 4 2

The same modifications also simplify the closed-form expressions
for Egs. (5) and (6). As pl" approaches zero:

Y ~ N (RTR/6? + Q7! + pD)~LRTY /62 + pl gl
A
(RTR/o? + Q7' + oI~ . (10)

The numerical optimization of Eq. (9) can be made using any
implementation available in specialized software. The preference for
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gradient-based method with proper analytical derivatives can acceler-
ate the process, as the derivatives can also be expressed as a function of
R and Y. Since o2 and A are necessarily positive quantities, it is easier
to construct an auxiliary vector ¢ to work on a logarithm scale, with
62 = exp(¢;) and A ; = exp({;). The derivatives can then be calculated as
in Eq. (11) and Eq. (12):
T -1\l pT
or I-REPLr N T [(RTR/exp) +05") ™" RTR/ exp(¢))|

i T zew@) 2 2
(€RD)
0B[n+1] RTRB[VM] _RTY gy 1l )
~ Q ) (glrtil _ pln
exp(¢;) exp(¢;) TP (ﬂ g )
()f 3 lB n+1T "QZI aln+l] + ltr ;lﬂ
5(, 2 dexp(C;) exp(¢;) 2 dexp(¢;)
-1
e )
St [(R R/exp(&) + Q') Texp @) 12)
) 0B[r,+11 RTRBMHJ _RTY s ﬂwl g (Bml] —B["]>~
exp({;) exp(&)

When evaluating Egs. (11) and (12), the derivatives of QII with
respect to ¢; will vary according to the structures adopted for the dis-
aggregated model. Besides, the right term in the second lines is exactly
what we had to set to zero to arrive at Eq. (5) (and, consequently,
Eq. (10)). This means that, in both Equations, such term will always
equal zero.

2.3. Simulation study

The model performance was assessed with a simulation study (Fig. 1).
We created a 1,000 % 1,000 response variable at the pixel level (i.e., n =
10%) by summing a non-linear function of a known explanatory variable
and a non-linear joint function of the spatial coordinates. Then, we
aggregated the exponential of the response variable over 90 randomly
generated block areas (i.e., N = 90) with different sizes and shapes.

Denoting the spatial coordinates as x; and x,, and the explanatory
variable as x;, the hypothetical response variable y was created using:

y = exp [-4.5 — 4sin(x3)/(1 + x3) + 3(x,
= 2(x, +25)%(x) = 5)| +e,

—20)%(x, + 15)
€~ N(0,6% =0.01)

Fig. 1 shows the explanatory variable x; (top left), an uncorrelated
variable x, (bottom left), and the 90 block areas with the corresponding
exponential aggregation of the simulated response variable over them
(right).

The disaggregated level model adopted a tensor product between
two cubic splines for the joint function of the spatial coordinates (Wood,
2006) and cubic splines for the univariate variables. In both cases,
we adopted the so-called “shrinkage” smoothers (Marra and Wood,
2011), which replace the zero eigenvalues of the penalty matrices for
small real numbers, so non-significant predictors are naturally removed
during the model fit. To evaluate the shrinkage effect and to test
the model’s sensitivity to specification mistakes, we also included an
uncorrelated spatial variable (x,) to the formulation:

y = exp [ + s(x), Xp) + 5(x3) + s(x4)] + €, € ~ N(0,16%).

The basis dimensions adopted were 20 for all cubic splines. The
initial trial value adopted, g!'!, was randomly sampled from a Gaussian
distribution with mean 0 and variance 0.01, and the weight of the
Levenberg-Marquardt algorithm was started as pl!! = 10.

Then, we compared our results with the potential conclusions that
could be taken from the aggregated data. We first averaged x;, and x,
over the block areas and plotted against the logarithm of the aggregated
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Fig. 1. The simulation procedure adopted. x; (top left), and x, (bottom left). The right image shows the exponentially aggregated response variable in a red-yellow-blue palette
ranging from red: 2.97 to blue: 8,825.44. The continuous lines represent the boundaries of block areas. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

response variable (i.e., logY). A LOESS curve was also added to show
the trend.

Codes were written in R, version 3.5.1 (R. Core Team, 2020). The
implementation of the smoothers was taken from the mgcv (Wood,
2017). Code parallelization was achieved with the Rmpi (Yu, 2002),
snow (Tierney et al., 2016), and parallel (R. Core Team, 2020) pack-
ages, and the manipulation of spatial data was performed using the
raster (Hijmans, 2017) package. All source codes used are available as
Supplementary Materials.

2.3.1. Sensitivity analysis

One important question for the simulation is how well the model
performs under different conditions, for example, a higher variability
on the simulated relationships and a smaller number of block areas. To
clarify this question, we performed a sensitivity analysis by replicating
the same problem but with different combinations of 62 and N. We
generated 25 combinations by setting ¢ = 0.1,0.3,0.5,0.7,0.9 and N =
10,30, 50, 70,90. For each combination, ten simulations were run with
different initial guesses. Then, the median values of the estimated
standard deviation (i.e., 6) and the sum of squared errors between
predictions and true values were reported.

2.4. Application: Bragilian sugarcane

The application consisted of trying the algorithm in a real setting
where the pixel-level data is unknown. In this exercise, we attempted
to downscale Brazilian agricultural data gathered at a municipality
(roughly equivalent to the United States’ counties) level.

Brazil is one of the world’s top producers and exporters of agri-
cultural products and one of the world’s largest country, with nearly
850 million hectares (Mha). It is administratively divided into 5,565
municipalities (i.e., N = 5,565), each of which records the production
of its agricultural outcomes annually. Since the 1980s, Brazil has had
the world’s largest harvested area and production of sugarcane. In
2017, croplands covered a territorial area of 65 Mha, of which 9 Mha

being devoted to sugarcane production (Fig. 2). Despite such a leading
position, the country’s average yield of sugarcane in 2018 was 74.4
ton/ha, far below the range of 100 to 120 ton/ha achieved by some of
the world’s most productive countries (Food and Agriculture Organi-
zation, 2020). Thus, research on sugarcane, including the generation
of new information, is an active area that might aid the search for
better use of natural resources combined with increases in agricultural
productivity.

Since sugarcane production is a non-negative quantity, we adopted
the exponential link function and assumed a sum between a non-linear
joint function of the projected spatial coordinates (i.e., x; and x, in
meters) and non-linear functions of the explanatory variables. These
include physical and chemical soil properties (i.e., the mass fraction
of clay content in %, x;, the soil organic carbon content in g/kg,
x,, and the cation exchange capacity in cmolc/kg x5 (Hengl et al,,
2017)), terrain and climatic characteristics (i.e., terrain slope in %,
x¢, (USGS, 2018), average precipitation per month in mm, x;, and
average maximum temperature per month in degrees Celsius, xq (Abat-
zoglou et al., 2018)), and an infrastructure variable (i.e., distance from
roads and railroads in kilometers, xg (IBGE, 2018; DNIT, 2018)). All
explanatory variables were aligned to a 100 m resolution grid, and
the disaggregated-level model considered for sugarcane production (p)
was:

P =exp [or+ s(x), %) + 5(x3) + 5(x,) + 5(x5) + 5(x6) + 5(x7) + 5(xg) + 5(x0))]
+e€  e~N(01I6)

In this application, we adopted thin plate regression smoothers
for both the multivariate and univariate variables (Wood, 2003). The
dimension adopted for the spatial smoother was 500, and 10 for the
univariate smoothers. Again, we adopted the shrinkage version of
the smoothers, and the random trial value, '), was sampled from
a Gaussian distribution with mean 0 and variance 0.01. The initial
Levenberg-Marquardt weight was pl!! = 2,500. We reasonably assumed
that sugarcane production only occurs in pixels marked as ‘cropland’ in
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Fig. 2. Sugarcane production (top, with legend), and cropland areas plus predictor variables (bottom): x; is the mass fraction of clay content, x, is the soil organic carbon content,
x5 is the cation exchange capacity, x, is the terrain slope, x; is the average precipitation per month, x, is the distance from roads and railroads, and x, is the average maximum
temperature per month. Each covariate has a different range, represented in a red-green-blue gradient (lower to upper values). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

the land cover data (Fig. 2, bottom right). Such class was constructed by
joining a broad ‘agriculture’ class with some more detailed classes with
a local coverage (e.g., ‘annual and perennial crop’ and ‘semi-perennial
crop’) (MapBiomas, 2019a; Souza et al., 2020; MapBiomas, 2019b). We
aligned all available information to a 100 m pixel resolution, which
results in approximately n = 5 - 10% cropland pixels.

2.4.1. Validation

The validation strategy adopted for our example consisted of a
qualitative and a quantitative evaluation. In the qualitative evaluation,
we compared the smoothers estimated against the agronomic literature
about the theoretical effects of different factors on sugarcane produc-
tion. It is reasonable to assume that the disaggregated information will
only be reliable if the smoothers have a physical meaning coherent with
the specialized literature. The choice of a quantitative model evaluation
is directly affected by the fact that the municipality level dataset used
to fit the model contains Brazil’s most detailed agricultural information.
An important implication is that no finer agricultural production infor-
mation (i.e., at the pixel level) is available to validate our results. To
overcome this problem, we recall that the ‘agriculture’ class inputted
into the model, as previously described in Section 2.4, was constructed
by merging different detailed land-cover classes (e.g., permanent and
temporary crops) into a single class. One of such classes is named “‘semi-
perennial crops” (Souza et al., 2020; MapBiomas, 2019b), which can
be assumed to be sugarcane, as done by similar studies with the same
database (do Nascimento Bendini et al., 2019; Pavinato et al., 2020;
Portinho et al., 2021). While this opens up the possibility of validating

the spatial allocation, adopting the spatial database as our ‘ground
truth’ could also be potentially problematic, so extra caution is needed.

Of the total 100.4 Mha of croplands in Brazil, the sugarcane area in
the spatial database is 8.7 Mha (i.e., 8.66%), while that reported in the
national statistics equals 10.2 Mha (i.e., 10.15%) (MapBiomas, 2019b;
IBGE, 2020). Such difference is more pronounced when evaluated at the
municipality level. A cross-check of information indicates that 3,431
Brazilian municipalities have sugarcane reported either in the spatial
database or national statistics. Of these, 2,424 (i.e., 70.67%) have
sugarcane according to only one of the two databases and not the
other. In the remaining 1,006 municipalities, the relative difference in
municipal sugarcane area reported in the two databases ranges from
—-99.998% to +4,400%, with a mean value and standard deviation
of 1.72% and 197.11%, respectively. To ensure a fair model eval-
uation under these circumstances, we opted to restrict the analysis
to only those municipalities whose relative difference of the values
reported in both databases is less than 10%. Such a procedure re-
sulted in the selection of 207 municipalities (6.03% of the 3,431
mentioned above). These are relevant for sugarcane for containing
28.50% of the production and from 27.49% to 31.94% of the total
sugarcane area of the country according to the spatial database and
national statistics, respectively (MapBiomas, 2019b; IBGE, 2020). In
these 207 municipalities, the sugarcane area represents 40.20% of the
total croplands area, with the shares per municipality ranging from
0.32% to 92.93%, and mean and standard deviation equal to 44.37%
and 23.72%, respectively (MapBiomas, 2019b).
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Fig. 3. Results from the simulation study. The left column shows the actual functions used to generate the data. The center column shows the relationship between the response and
explanatory variables at the aggregated level, with observations represented as black points. The right column shows the relationship extracted by the model and the observations

at the pixel level (which were unknown to the model during the fit).

The additional assumptions introduced do not enable the validation
of the predicted production values themselves but allow assessing the
accuracy of the spatial allocation of model predictions. Under this view,
the model can be interpreted as a classifier: the predicted production
being an indirect indicator of the chance of observing sugarcane on
a given pixel and with crop presence only in pixels where the pre-
dicted values exceed some threshold. Because of the significant role
played by the threshold in this evaluation, we followed the standard
procedure for binary classification problems to construct a model curve
to summarize the existing tradeoffs. The most common option is the
Receiver Operating Characteristic (ROC), which balances between true
and false-positive error (Maimon and Rokach, 2010; Swets, 1988).
However, because our dataset is imbalanced due to the low share of
sugarcane among all crops, the ROC curve may unrealistically overes-
timate model performance. We constructed the Precision-Recall (PR)
curve to overcome this problem, which yields a more realistic model
assessment for the condition described. The quantities represented,
Precision and Recall, do not include the inflated true negative class
and correspond to: (i) the probability that sugarcane is indeed present
when the model predicts sugarcane; and (ii) the probability that the
model predicts sugarcane in locations where there is indeed sugarcane
present, respectively (Sofaer et al., 2019; Saito and Rehmsmeier, 2015).
Precision and Recall are also known as user and producer accuracy,
respectively, in some fields of knowledge. The best threshold for the
model was defined as the point closest to the optimal theoretical
threshold for the PR curve, and the overall accuracy of the spatial
allocation was also reported.

3. Results and discussion
3.1. Simulated study

Fig. 3 showing hows analyzing aggregated data without accounting
for the spatial variability can potentially mislead conclusions about
the true relationship between the response and explanatory variables.
While the true function of x; (top left) resembles a periodic function
with a maximum nearly —1 and a minimum nearly 1, the LOESS
curve extracted from the aggregated data (top center) shows only a
curvy decrease. For x,, the true function indicates no correlation with
the response variable (bottom left), while the LOESS curve (bottom
center) suggests an increasing relationship. In both cases, the curve
estimated using the proposed method (right column) strongly resembles
the original. As the disaggregation model explicitly addresses the spa-
tial dependence, the smoothers (right column) have a relatively narrow
standard deviation even with large variability in the data points. These
results reinforce that wrong conclusions about the actual process would
be taken if a simple correlation analysis was performed.

The model predictions at the unobserved disaggregated level (i.e., for
y) shown a high similarity with the corresponding true components.
The left group of Fig. 4 compares the actual y (left), which were
assumed unknown during model fit, and the model predictions (right).
The right group row shows the original spatial term (i.e., s(x;,x,),
left), also assumed unknown during model fit, and the corresponding
reconstruction predicted by the smoother adopted (right). In the re-
sponse variable, the reconstruction is nearly indistinguishable from the
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Fig. 4. Results from the simulation study. The left group shows the response variable (i.e., y): true and estimated (left and right, ranging from red: —0.0005 to blue: 1.48); the
right group shows s(x,, x,): true and estimated (left and center, ranging from red: —1.92 to blue: 6.3). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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Fig. 5. Results from the sensitivity analysis. The left map shows the effect of true standard deviation and sample size on the standard deviation estimates, while the right map

shows the effect on the sum of squared errors between predictions and true values.

original component. For the spatial effect, the middle region is slightly
different, which can be explained by the discontinuities of the original
function in this region. In general, the results indicate a successful
approximation of the true functions by the model.

The sensitivity analysis evaluated the method’s ability to reconstruct
the original from the aggregated data under different settings. Fig. 5
shows the variance estimated (left) and the sum of squared errors
(right). For the former quantity, the results show the considerable
influence of the number of block areas, suggesting that having a
sufficiently large sample size is crucial for a proper application of the
model. A quick degradation of method abilities for this particular case
is observed for N < 50 block-areas. In this situation, the study is likely
to be underpowered, and the method does not have enough information
to distinguish between the systematic and random patterns of the data.
The results indicate a joint influence of the true standard deviation

and the sample size for the latter. In all calculations where the method
has enough power (i.e., N > 50), increasing the standard deviation in
the data simulation procedure also increases the total error of model
predictions compared to the true values. These results indicate that het-
erogeneous datasets may demand more block-areas for its estimation,
and suggest that the threshold of 50 block-areas cannot be generalized
for all applications, as it tends to vary according to problem-specific
characteristics such as the variability of the phenomenon modeled, the
spatial configuration of block-areas, among others.

3.2. Real example

For the real example, the smoothers obtained are shown in Fig. 6.
In the qualitative evaluation of the results, most of the curves were
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Fig. 6. Results from the actual application. In the top row, the left map shows the estimated spatial effect with the corresponding standard deviations in the right. Both maps
are in a red-green-blue gradient (lower to upper values). The frames in the two bottom rows show the estimated smoothers (red) with the corresponding standard deviations
(gray). The horizontal dashed line crossing zero allows the interpretation that regions above it contribute to the increase of agricultural production, while regions below it have
the opposite effect. Two vertical dotted lines indicate the 5% and 95% percentiles of the data. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

found to be coherent with the agronomic literature. For soil con-
ditions, we expected an ideal clay content to be neither too small
(i.e., sandy) so that infiltrated water is not available to plants, nor
too large (i.e., clayey) so the roots have a low growth rate. While
sandy soils have low water retention that impedes root development,
overly clayey soils may show salt accumulation and poor aeration,
which implies low oxygenation when humid or high physical resistance
to root growth when dry (Lal and Shukla, 2004). We also expected
the cation exchange capacity to be positively correlated to sugarcane
productivity, as its increase represents a greater ability of the soil to
retain more nutrients to nourish the plants better (De Boodt, 1972).
For the soil organic carbon, we expected a decreasing relationship. The
conversion from forest to cropland is known to lead to the depletion of
the soil organic carbon pool, and the effect can be worse depending on
the management practices adopted. Since different mechanisms such
as oxidation, mineralization and erosion can reduce the soil organic
carbon with time (Clark et al., 2017; Lal, 2002), lower concentrations
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may coincide with places where the agricultural activity is older and
more consolidated. The estimated smoothers agree with this prior
knowledge: the clay smoother, s(x;), is actually an inverted U-shape
with an ideal mass fraction of clay content around 22 to 51%, and
the soil organic carbon smoother, s(x,), contains a curvy decreasing
pattern. While our model extracted an inverse relationship for the
cation exchange capacity, it was a relatively weak (i.e., with a small
magnitude) and highly uncertain effect when compared to the others.

For precipitation, we expected its curve to resemble an inverted
parabola. If low precipitation leads to low availability of water and
nutrients for the plants, its excess could also harm production as
cloudy skies tend to reduce the incidence of photosynthetically active
radiation. For the temperature, we expected the curve to indicate
that warmer places favor higher sugarcane productions. The estimated
smoothers seem to agree with this interpretation. Despite the un-
certainty in the extremes, the patterns of Fig. 6 indicate a positive
effect of rainfall on sugarcane production, s(x;), for values above
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Fig. 7. Precision-Recall (PR) curve for the actual application model when interpreted as a classifier for the existence of sugarcane. The asterisk is the optimal point of Precision

= Recall = 100%.

70 mm/month, and with a peak ending at around 125 mm/month.
Such a range overlaps with the amount described by the Food and
Agriculture Organization (Food and Agriculture Organization, 2021) of
125 to 208 mm/month. For the temperature, the curve s(xy) points
to increasing production for values above 26 °C, with larger uncer-
tainty above 30 °C. These values are slightly higher than the optimum
growth interval defined by the Food and Agriculture Organization as
between 22 and 30 °C (Food and Agriculture Organization, 2021).
This is expected since we used the ‘maximum monthly temperature’
variable, which is greater than the ‘average monthly temperature’ used
to define the optimum growth interval. Our interval is also very close
to the optimum range between 25° and 33 °C described by dos Santos
Almeida et al. (2008) for sugarcane in Brazil.

The slope variable also matched with the prior knowledge. We
expected it to be negatively correlated with sugarcane production since
steep terrains hinder the mechanization of agricultural areas. However,
the estimated curve s(xs) showed that sugarcane tends to be more
productive in flat cropland areas, with a slope lower than 9.5%. The
only variable with an unexpected pattern was the distance from trans-
portation infrastructures. We expected it to be negatively correlated
with sugarcane production because distant areas can be argued to have
higher costs and greater losses. However, its curve, s(xg), tended to zero
during estimation, indicating very little influence of this variable. As
the model used only the information for cropland areas during the fit,
one possible explanation is that the distance variable range (from 0 to
14 km) is already narrow enough to exclude isolated areas and places
where the transportation costs are prohibitive.

We assessed the model’s ability to correctly allocate sugarcane
on the cropland pixels in the quantitative evaluation of predictions.
Fig. 7 shows the PR curve (blue) for the model when interpreted as
a classifier, along with a baseline (red) representing the performance
of random allocation, that is, 4 = 40.20% as described in Section 2.4.1.
Ideally, we would like our model to maximize both quantities simulta-
neously so that the optimal point would be located at the upper right
corner of the plane, represented with an asterisk in Fig. 7. The green
curve represents a normalized measure of proximity (i.e., one minus the
Euclidean distance) between points on the PR curve and the asterisk,
and the black dashed vertical curve indicates its maximum. Using
the threshold indicated by the dashed curve, the chance of observing
sugarcane in a pixel where the model predicts sugarcane (i.e., precision
or user accuracy) equals 59.59%, the chance of having the model
predicting sugarcane where sugarcane is indeed present (i.e., recall or
producer accuracy) equals 79.18%, and the overall accuracy is 70.05%.

The values found are, in general, lower than those found in re-
mote sensing papers for the same crop and in the same country.
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For example, dos Santos Luciano et al. (2019) built Random Forest
models for eight sites of 389,000 ha each in the Sdo Paulo state,
Southeastern Brazil, and found overall accuracies ranging from 82%
to 95%. Vieira et al. (2012) classified sugarcane presence in three
Brazilian municipalities also from the Southeastern region and found
a global accuracy of 93.99%. (Zheng et al., 2021) detected sugarcane
in the 14 Brazilian states that produce 98% of the sugarcane in the
country, with the results per state varying from 80.70% to 93.10%
(producer accuracy), 85.70% to 100.0% (user accuracy), and 88.60% to
95.68% (overall accuracy). Several reasons could explain the reason for
such difference. On the one hand, the example presented here could be
expected to perform worse for: (i) having the prediction of yield as its
primary goal, with the presence-absence prediction being a subproduct;
(ii) calculating the accuracy from another existing database, not from
points collected on the field or by visual interpretation; (iii) not using
any post-processing techniques as usual in classification maps (Simoes
et al., 2020). On the other hand, it could be expected the current
application to perform better for (i) predicting over an agricultural
mask previously generated and validated, and not the whole territory
(i.e., MapBiomas (2019a)); (ii) using national statistics as an input data
for calculations and not as for the validation of the results obtained.

However, the central point is that the results could be improved
while still under the method proposed. One significant remark is that
the model and the inputs used in our example are very simplistic for
the phenomenon of sugarcane production, but the same proposed linear
structure of Eq. (1) allows for greater complexity in real applications.
For sugarcane predictions and other environmental applications, a
particularly relevant possibility is the so-called functional data analysis,
where the set of explanatory variables can be made up not only by point
observations as in our example but of continuous functions (Ramsay
and Silverman, 2005; Kokoszka and Reimherr, 2017). In this case,
it would be possible, for example, to replace the average monthly
temperature with each pixel’s annual history of daily temperatures,
their Normalized Difference Vegetation Index (NDVI) curve, which is
widely used for being correlated with crop yield (Moriondo et al., 2007;
Wall et al., 2008), or any other relevant time series. Formulating an
actual application with these settings would have better results and
greater physical realism.

Fig. 8 shows the predicted production for sugarcane in Brazil. In
this map, the background was darkened to improve contrast, and pixels
from municipalities with a zero sugarcane production were removed,
even though their information was used during the model fit. Two
frames were added on the right to show zooms over different munici-
palities with intra-municipality variations. When fitting the model, we
divided the original input by 10* to avoid numerical problems. In this
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Fig. 8. Predictions at the disaggregated level for the actual application. Values are presented in a red-green-blue gradient, ranging from red: O tonnes to blue: 198 tonnes
[maximum value]. The two frames in the right show zooms in two different municipalities, and illustrate the variation of predictions within each block-area. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

scale, which converts 150 t/ha to 0.015 -(10*t/ha) for example, the
standard deviation was estimated as ¢ = 0.077. Such a large magnitude
is unsurprising since the process of predicting about a much finer scale
from aggregated information is unavoidably uncertain by nature. Adds
to that the fact that the model considered is relatively simple, with
the spatial effect being only a proxy for more complex effects, such
as technologies used, agricultural practices adopted on the field, and
other biophysical variables not included explicitly. Such effects may not
appear much on the secondary pixel-level information adopted in our
example, and primary information such as satellite-gathered data are
likely the only indirect source possible for such variability. Therefore,
another possible solution to reduce uncertainties beyond functional
data analysis is to explore the incorporation of satellite information as
predictors, which could enrich the inputs in real uses of the example
presented here. Similar idea have already been implemented in small
scale studies by Mello et al. (2014), Khan et al. (2010) and Walker and
Mallawaarachchi (1998). Another more guaranteed approach could be
the relaxing the constant variance assumption of Eq. (1) by explicitly
modeling the variation as a function of the covariates, as in Stasinopou-
los et al. (2017). This has the disadvantage of demanding changes in
the estimation method.

Since the pixel adopted in this application has a 100 m spatial res-
olution, whose area corresponds to 1 hectare (ha), the results obtained
can be compared directly to other annual productivity values previ-
ously reported in the literature. Our predicted values were lower than
198 tonnes (t), which can be compared to the work of Waclawovsky
et al. (2010). The authors reported the maximum commercial yield of
sugarcane in Australia, Colombia, and South Africa as 148 t/ha.year,
and 240 t/ha.year in Brazil. Also, in Southeastern Brazil, Pinheiro et al.
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(2010) collected data over 14 years and found a productivity that
ranged from 50 to 150 t/ha. Such reference values indicate that our
predictions are within the range of actual values. One positive point of
the model adopted is that it naturally makes unsuitable pixels tend to
zero, which suggests additional post-processing steps could be added.

The match between the results obtained and the literature is a
significant indication that the method converged successfully. At this
point, it is possible to see that the general modeling approach adopted
presents several characteristics that can contribute to other meth-
ods previously published. For example, the statistical model can be
adapted to different situations and disciplines without much additional
effort, thus overcoming the difficulty that arises when adapting top-
down models created for specific application or regions of the world,
e.g., Szyniszewska (2020). Another example is that the approach did
not demand explicit upper bounds for the unobserved variables. The
exponential link function adopted is completely unbounded, and the
values predicted resulted from a balance between data fit and the
wiggliness of smoothers during estimation. Besides, for the estimation
method specifically, the objective function minimizes a quadratic error
between aggregated predicted values and the data observed instead of
forcing the equality as in Malone et al. (2012, 2017). This decision
brings extra reliability to the method in the sense that it does not
assume that the observed data is perfect but may contain measurement
errors. The application for the Brazilian agricultural production data
illustrates the importance of this assumption since the database is made
of educated guesses declared by several independent agents around the
country (IBGE, 2020).

The potential of scaling calculations becomes more evident when
the results are compared to other works previously published about
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the same problem and in the same study area. The most prominent
work is that of You and Wood (2006), who disaggregated maize, wheat,
rice, sorghum, potato, cassava, bean, and soybean production to a 9 km
grid in Brazil. Our methodological proposal opens up the possibility
to far exceed the resolution adopted by the authors, thus increasing
our ability to input finer datasets and produce more detailed outputs.
Our results presented have a nearly 10 times higher resolution, which
converts to nearly 10* times more pixels used for the disaggregation.
Such a gain in the resolution of simulated crop datasets can potentially
enrich several applications, including the identification of hotspots of
land-use change (Kuemmerle et al., 2016), the projection of future
food security scenarios (Nelson et al., 2010), the assessment of nutrient
flow (Liu et al., 2010), spatial zoning, and other planning applications.
The attempt to quantify how much the production of a single crop
comes from illegal deforestation practices by Rajao et al. (2020) also
highlights how much applications and studies could benefit from a high
resolution simulated crop dataset.

Beyond the example provided for an agricultural application, other
areas that can benefit from the proposed method include epidemiol-
ogy (Utazi et al., 2019), demography (Wardrop et al., 2018), clima-
tology (Gorner et al., 2020), ecology (Tamis and Van 't Zelfde, 1998),
economics (Monteiro et al., 2018), remote sensing (Zhan et al., 2013),
land system science (Fendrich et al., 2020), and others. Furthermore,
the method can also be applied in cases where the disaggregated-level
areas are not continuous but discrete. As long as the disaggregated-
level areas can be assigned to a single block-level area, Bastiani et al.
(2018) show that the same structure of Eq. (1) can accommodate an
intrinsic autoregressive model for areal data. This fact increases even
more the possible applications of the disaggregation method, especially
for economic data where many phenomena follow political boundaries.

4. Conclusions

In this work, we presented a method to estimate the parameters of
a known disaggregation model from the aggregated data in parallel.
The technique is computationally efficient and opens up the possibility
of working with high-resolution data and large geographical areas,
situations that have not been addressed in the literature so far. By ex-
emplifying with a very general model for the data at the disaggregated
level, our method is suitable to be readily transferred to other fields of
research, thus providing another option researchers and practitioners.

Our results for a simulation study indicate that the method could
successfully predict 1 million pixels using only the information of 90
block areas for the fit. The success was not affected by an uncorrelated
variable purposely inserted, which indicates some robustness against
misspecification. The sensitivity analysis shows that model performance
tends to degrade as the variance of the true phenomenon at the finer
scale increases and the number of block-areas decreases. In our partic-
ular example, there seemed to exist a threshold of N = 50 block-areas
above which the method’s performance was satisfactory as judged by its
ability to recover the true standard deviation parameter and regenerate
the true functions.

For the real example of sugarcane production in Brazil, the values
predicted were mostly within the range of actual values found in the
literature, and the smoothers obtained were generally coherent with
previous knowledge. When considered as a classifier and validated
against known locations of sugarcane in Brazil, the model had user,
producer, and overall accuracies of 59.59%, 79.18%, and 70.05%, re-
spectively. While these values are not as high as specific remote-sensing
studies for the same phenomenon in the same study area, this can be
reasonably explained by the quite simplistic formulation adopted as an
example of the method’s functioning. In actual applications, our estima-
tion method can be used for models with more detailed formulations
and datasets, such as the usage of time-series of climate or satellite-
derived variables for explaining sugarcane production. Compared to
the most successful previous work published that disaggregated crop
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information in Brazil, the scalability brought by our work allowed us to
work on a nearly 100 times higher resolution, thus with nearly 10,000
times more pixels. Such a gain in resolution makes the results more
adequate for use in practical applications and studies.

Despite the advances, further work can still improve the method.
Incorporating the ability to model the variance parameter as a function
of one or more covariates can improve predictions’ uncertainty. Such
gain comes at the cost of changing the derived objective function
and consequently, the estimation procedures. While methods for this
problem exist in the literature, the possibility of scaling their calcula-
tions in a disaggregation setting still needs further investigation. Also,
developing measures to evaluate model fit is necessary to assess all the
assumptions made.

Computer code availability

Name: “Disaggregation”.

Developer: Arthur Nicolaus Fendrich. University of Sdo Paulo, Luiz
de Queiroz College of Agriculture. Corresponding address: Avenida
Padua Dias, 11. Postal Code 13418-900, Piracicaba, SP, Brazil. E-mail
address: arthfen@gmail.com. Telephone: +55 19 3417 2100.

Year first available: 2021

Hardware required: 2 GB RAM, 100MB storage.

Software required: All codes were written in R, version 3.5.1 (R.
Core Team, 2018). The implementation of the smoothers was taken
from the mgcv (Wood, 2017). Code parallelization was achieved with
the Rmpi (Yu, 2002), snow (Tierney et al., 2016), and parallel (R.
Core Team, 2018) packages, and the manipulation of spatial data was
performed using the raster (Hijmans, 2017) package.

Program language: R, version 3.5.1.

Program size: 7.7 MB.

Details on how to access the source code: All source codes used
for the simulated example are available at: https://github.com/arthfen/
disaggregation.
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Appendix

In the present appendix we prove convergence of our proposed
algorithm. Because we linearize the likelihood of Y with relation to g
at each iteration and we add a quadratic penalty term to the resulting
objective function (for stabilization purposes), our method resembles
the Levenberg—Marquardt iteration but it is not really the same algo-
rithm. In our method, the optimization of each problem is performed
over the (c2, 1) variables and g is actually computed as a function
B(c?, 1), which may be nonlinear on (62, A). Therefore, a mathematical
convergence analysis is necessary in order to provide a characterization
of the outcome of the method.

We start our analysis by considering an abstract method for opti-
mization and showing that it has satisfactory convergence properties.
Afterwards, we consider how the algorithm used in the paper fits the
mathematical development.

Proposition 1. Let f : RYN — R be Lipschitz-continuous and differen-
tiable. Consider the algorithm

¢t = argmin - £(2) + AL, ¢, 13)
¢

where hl"l : RN xRN - R are such that

|ag, ey < EN¢ - ¢))?

for some large constant E > 0. Then, if |1 ¢ = 0, every limit point
of the sequence {¢"} is a critical point of f.

Proof. Notice that the hypothesis lead to

F© =CIIE = "2 < £+ A, ¢ < F( )+ CllE - ¢M)2

for C = LE, where L is a Lipschitz constant for f.

Now, suppose that ||+ — W) - 0, and assume that there is an
accumulation point ¢ of {¢!"} that is not a critical point of f and denote
{¢ [fv]} a subsequence converging to Z

It is a well known fact in optimization that given Z with Vf (Z) #0
and fixed « € (0, 1), then there exists @ > 0 such that for ¢ € [0, ®] we
have

FE=dVf©) < O~ pall VLI

By denoting {(¢p) 1= — ¢V f(£) and K := a||Vf(0)|? the above can be
more simply stated as

(14

(@) < ) - ¢K. (15)
Furthermore, notice that
6@ — ¢l <pM, where M =|[[VFQ)Il. (16)

We then use the second inequality in (14) with ¢ = ¢(¢) and 5
replaced by ¢, — 1 to get
F(E@) +hE™ (), ™) < £ (L) + CliE(@) — S92
Application of (15) assuming a fixed ¢ € (0, ®) now gives
F(&@) +h= 1 (g(@), &™) < £@) + ClIg() = I - ¢k
=f@O+C L@ —C+T -+l
= ¢ —gK
< f@O+CUE@) -2l
+ 18 = )|
+ [1g1 = g - ¢k

Taking (16) into consideration we get

F(E@) +rE1(g(@), g~
< @+ COM + I8 = 1|+ 1g%) — =12 — K.
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Because the above arguments hold for every ¢ € (0, ) we can assume
that ¢ < K/(9CM?) and because ¢%) — ¢ and || — ¢+ = 0
we can assume that » is large enough so that IIE -¢ il < ¢M and
(1) — %=1 < pM. Therefore

F(E@) + A (E@). g7 < £©@) + ¢*9CM? — pK
= f(©) + d(p9ICM? - K)
< f©@ - ¢r.

where y = K—¢9CM? > 0. On the other hand, using the first inequality
in (14) with ¢ = ¢ and & = ¢"“~1 we have

£EN + AT, g0 > pglh) — Cpigtnd - ¢t

= f@©~ f©+ fh)
= Cligtl = gom e,

a7

Recalling that f is continuous, then, again because C[fﬂ] - E and
||§[’7_] — ¢ S 0 we can assume that # is large enough so that
1£©) = £ &N < ¢r/8 and 1§11 — ¢~ < ¢/(8C). Therefore

f(c[fq]) + h[fq‘ll(g[fn]’c[fq‘ll) > f(E) _ % (18)
Comparing (17) with (18) we see that

F(E@) + 1 (g(@), ¢) < @ty + =Nl g1,

O

In order to understand how our proposed method fits the above
convergence analysis, we will start by observing that at iteration # we
linearize the likelihood of Y in a way that

@) = £ + ol B - B

Let us simplify the notation by using ¢ = (62, 1) and we will assume
that the sequence of functions g(¢) given by

which contradicts (13).

BT = (XTGMTAT(AAT6%) ' AGIIX + Q3 + pinT)
x [XTGWTAT (AATG?) ™ (¥ - Ag (XB") + AGUXE" ) + p[ﬂlﬁ”"]
satisfies

||ﬂ["](§) — ﬂ[n](fo)” <L|I¢-ol

for some large enough constant L > 0. In such a case, we have
@) = £+ 0 - ¢

and, therefore, because the quadratic penalty term is also O(||¢—¢||2),
our proposed algorithm is an instance of the general method analyzed
above with f = ¢ and hl" = £l — ¢,
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