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Licania tomentosa is a widely distributed species in Brazil, commonly used in urban landscaping and environ-
mental restoration. Despite its potential, understanding the relationship between fruit maturation and seedling
quality remains limited. This study aimed to evaluate the relationship between maturation stages - classified by
epicarp coloration - and seedling performance through RGB colorimetric analysis, fruit morphometry, and the
application of machine learning algorithms. Fruits were collected from mother trees and classified into four color
stages based on the Munsell color chart. Digital images were analyzed to extract RGB values and morphometric
parameters of the fruits using ImageJ® software. Subsequently, seedling emergence, biometric attributes,
biomass accumulation, and the Dickson Quality Index (DQI) were evaluated. Yellow-Red fruits produced seed-
lings with higher emergence rates, greater shoot and root biomass accumulation, and higher DQI values, indi-
cating greater seedling vigor. In contrast, Greenish Green-Yellow fruits resulted in less vigorous seedlings. The
Red band was the main indicator of changes in the fruits. Morphometric parameters alone were insufficient to
discriminate the maturation stages. Linear Discriminant Analysis correctly classified 90.48 % of the fruits ac-
cording to their maturation stage. The integration of colorimetric data with machine learning proved to be an
effective, non-destructive, and low-cost approach for optimizing seed selection. To enhance the predictive ac-
curacy of the model it is recommended to expand the dataset under natural conditions and explore alternative
color systems and complementary fruit traits.

1. Introduction landscaping projects [5].

The species occupies a prominent position in the urban landscaping

The family Chrysobalanaceae comprises 20 genera and more than
500 species of shrubs and trees, distributed across tropical and sub-
tropical regions of the world [1,2]. Among these genera, Licania stands
out as the most prominent, occurring from the United States to South
America [3]. The species Licania tomentosa (Benth) Frisch, popularly
known as oiti, is widely found in Brazil, with greater incidence in the
Northeast Region [4]. The height of L. tomentosa ranges between 6 and
15 m, with a trunk diameter between 30 to 50 cm. Flowering occurs
between the months of June and August, while fruiting is concentrated
between January and March. Its dense crown, with high shading ca-
pacity, is one of the main factors justifying its widespread use in

* Corresponding author.

of squares and parks [6-8]; in the restoration of degraded areas [9]; and
in the pharmaceutical industry [1]. It also has food value, with emphasis
on the concentration of bioactive compounds such as polyphenols and
flavonoids [4].

Despite its various applications, knowledge about the agronomic
aspects of L. tomentosa is still limited. Studies on fruit and seed
morphometry [10], seedling development [11] and management in
different productive environments [12] are still incipient. One of the
persistent challenges in seedling production is the absence of stan-
dardized criteria for fruit selection, a factor that directly affects vigor
and uniformity. Since the species is multiplied by seeds contained in
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drupe-type fruits, which are used for sowing without the need for dep-
ulping [13], the correct identification of the fruit maturation stage be-
comes essential to better understand this specie and to ensure the quality
of the seeds.

In practice, the absence of standardization leads implies for seedling
production. Samples composed of seeds from fruits at different stages of
maturation result in seedlings with distinct physiological performance,
which compromises uniformity and increases operational costs due to
the need for replanting and longer cultivation time. Moreover, less
vigorous seedlings exhibit lower survival and adaptation rates in the
field, negatively affecting the outcomes of urban landscaping and
environmental restoration programs [14].

The drupes of L. tomentosa have an elliptical shape, ranging from 12
to 16 cm in length. During maturation, the epicarp, which is smooth and
thin, displays a coloration that varies from green (immature) to yellow/
orange (mature). The mesocarp is fleshy, with a bittersweet flavor and
yellow color, while the endocarp is membranous and light-colored. The
seed, in turn, presents a high lipid content [10,15]. The fruit maturation
process involves a series of morphological, physiological, and
biochemical transformations [16]. Among the most evident visual in-
dicators, the variation in epicarp coloration stands out, directly associ-
ated with chlorophyll degradation (green) and the synthesis of
carotenoids (yellow) and anthocyanins (red) [17]. Such colorimetric
changes can be used as relevant visual indicators to infer the fruit
maturation stage [18]. However, human perception of color is subject to
the interaction between brightness and intensity, which can result in
subjective interpretations of the shades of a single color, compromising
standardization and reproducibility of the process [19,20].

Computer vision systems, such as color analysis methods, are rele-
vant, objective, and standardized alternatives [21], capable of over-
coming the limitations inherent to human visual analysis and ensuring
greater precision in fruit selection. Among the available techniques, the
RGB (Red, Green, Blue) color system stands out as a widely used tool for
fruit color analysis [22,19,23]. The RGB color channels operate at
wavelengths of 700, 546, and 435 nm, respectively [21]. RGB usage
requires simple algorithms, making it more cost-effective and employed
for different types of chromatic analyses [24]. Its effectiveness has
already been proven in detecting the maturation stage of strawberries
[25], naval oranges [26], tomato [27], and Swingle citrumelo [19].

Additionally, recent advances have incorporated machine learning
algorithms to classify maturation stages from digital images, enabling
scalable, low-cost, and non-destructive approaches [20,28]. Linear
Discriminant Analysis (LDA) is an algorithm used in situations where the
analyzed objects present very similar visual characteristics, making it
difficult for human vision to distinguish them. In such cases, LDA proves
capable of identifying these similarities and accurately separating the
objects [29].

LDA aims to find a linear combination of attributes that characterize
the objects, separating them into classes. For this purpose, dispersion
matrix analysis is used, which allows dimensionality reduction of the
data without compromising the maximum separation between the
classes [30]. LDA has demonstrated high performance in classifying six
types of apples, achieving 98 % accuracy [31]. In the study conducted by
Zulkifli et al., [32], LDA was the most efficient classifier among four
evaluated methods, achieving 83.5 % accuracy in classifying different
maturation stages of papaya.

Despite the relevant advances in these methodologies, to the authors’
knowledge, there are still no studies that relate fruit coloration to the
seedling performance of L. tomentosa. The objective of this study was to
evaluate the relationship between the fruit maturation stage of
L. tomentosa and seedling quality. To this end, we used data from
colorimetric analysis, morphological characteristics of the fruits, and
seedling performance. Based on this dataset, we applied machine
learning algorithms as a strategy for fruit selection, with the aim of
ensuring greater precision and standardization in the production process
of high-quality seedlings of the species.
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2. Material and Methods
2.1. Fruit collection and material preparation

The study was conducted with intact and healthy fruits from ten
matrix plants located at the Federal Institute of Piaui — Urucui Campus,
Brazil (7° 16’ 42" S 44° 30’ 22" W, altitude of 359 m above the sea level).
Manual collection occurred after spontaneous fruit drop. The region’s
climate is Aw-Koppen, tropical with abundant rainfall in the summer,
with an average annual precipitation of 1069 mm and an average annual
temperature of 27.2 °C. The fruits were classified according to epicarp
coloration using the Munsell color chart for plant tissues (Gretag-
Macbeth, New Winsor, NY, USA), which considers the parameters of
hue, value, and chroma (Table 1).

2.2. Morpho-colorimetric characterization

For colorimetric analysis, photographs of 36 fruits of each coloration
were captured with a digital camera (Nikon Coolpix $6200, 16 Mpx®),
equipped with a charge-coupled device (CCD). Artificial lighting was
provided by four fluorescent lamps (40W; 5250 K color temperature).
The images, in Tagged Image File Format (TIFF) and 350 dpi resolution,
were analyzed using ImageJ® software, version 1.54m [33]. The soft-
ware allowed the extraction of pixel intensity values from the RGB color
components (bands), and the grayscale. In addition to the average pixel
intensity, which ranges from 0 to 255, was calculated using the ratio (R
+ G+ B)/3.

The original image of each fruit was subdivided into three 8-bit
grayscale images, containing the R, G, and B components of the image
pixels (bands). Furthermore, the software was also used to obtain
morphological descriptors of the fruits, corresponding to perimeter,
surface area, aspect ratio, roundness, and circularity (Fig. 1).

The perimeter represented the length of the two-dimensional con-
tour of the fruit (cm). The surface area corresponded to the amount of
two-dimensional space of the fruit, expressed in em? after pixel con-
version. The aspect ratio represented the ratio between the major and
minor diameters of the ellipse that circumscribes the fruit, indicating the
degree of elongation. Roundness reflected the inverse of the aspect ratio,
calculated by the Eq. (1):

area
R=4 X 1
X T x largest diameter? )

Lower values indicate more circular fruits. Circularity corresponded
to the degree of approximation of the fruit to a circular shape, calculated
by Eq. (2):

area

C=47r x ——— 2
perimeter?

Table 1
Epicarp color characterization of oiti (L. tomentosa) fruits through visual clas-
sification by Munsell color chart.

Epicarp color Hue Value and Chroma
Greenish Green- 7.5 GY 3/4* = low luminosity / moderate -
Yellow saturation
Yellow 5.0 Ye 6/8 = moderate luminosity / high -
saturation
Yellow Yellow-Red 7.5 6/10 = moderate luminosity / high -
yYR saturation

Yellow-Red 5.0 YR 4/8 = low luminosity / high saturation -

" The first number represents the value, which indicates the lightness of the
color on a scale from 0 (black) to 10 (white); the second number represents the
chroma, which indicates the intensity or saturation of the color, where higher
values indicate purer and more intense colors.
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(a) (b) (© (d) (e)

Fig. 1. Extracting morphological descriptors of oiti (Licania tomentosa Benth) fruits through image analysis: perimeter (a), surface area (b), aspect ratio (c), roundness
(d), and circularity (e).

Values ranged from O (elongated shape) to 1 (perfect circle). 2.3. Seedling production
Complementarily, the length (cm) and width (cm) of the fruits were also
determined using ImageJ®. After classification, 100 fruits of each epicarp coloration were sown
at a depth of 3 cm in plastic boxes containing medium-textured sand (5
dm3), arranged in a greenhouse (35 % shading). The substrate water

Fruit collection

v

Visual classification

Munsell color chart for plant tissues

v \’

Image acquisition Seedling production
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Fig. 2. Overview of the dataset acquisition and analysis workflow for model development.
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content was adjusted daily to maintain “pot capacity” [34]. The relative
air humidity was around 65 %, and the average temperature was 24.8
°C, monitored with a digital thermo-hygrometer (Akso, model AK632)
from seedling emergence to seedling evaluation. The percentage of
emergence and the seedling emergence speed index — ESI [35] were
recorded daily until stabilization, according to the Eq. (3):

ESI — Z% &)

where n is the number of emerged seedlings on day D; and D is the
number of days after sowing.

At 80 days after sowing (DAS), four replicates of ten seedlings per
treatment were randomly collected for measurement of the following
parameters: number of leaves (NL); shoot height and main root length
(RL), using a graduated ruler (cm); stem diameter, measured using a
caliper (cm). The shoot dry mass (SDM) and root system dry mass (RDM)
were determined using an analytical balance (g seedling™), after drying
in a forced-air oven at 65 °C for 72 h. Subsequently, the biomass
partition for shoot and root system was determined. Finally, the Dickson
Quality Index (DQI) was calculated, according to the Eq. (4) proposed by
[36]:

Total dry mass

Height + SDM
Diameter RDM

DQI = )

Original

Greenish Green-Yellow
7.5 GY 3/4

Yellow

5.0 Ye 6/8

Yellowish Yellow-Red
7.5 yYR6/10

Yellow-Red
5.0 YR 4/8

Red (R)
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2.4. Classification of fruits based on colorimetric parameters

A maturation stage classification model was developed using tradi-
tional machine learning techniques based on Linear Discriminant
Analysis (LDA). A database consisting of the colorimetric variables ob-
tained from the evaluated fruits (n = 144) was established, which was
randomly subdivided into two sets: 70 % for model training and 30 % for
performance testing. The core methodological steps involved in the
acquisition and analysis of the dataset, which underpinned the devel-
opment of the model through a machine learning approach, are pre-
sented in Fig. 2.

2.5. Statistical analysis

A completely randomized experimental design was adopted,
considering four categories of epicarp coloration and four replicates.
After verifying the normality of the data using the Shapiro-Wilk test,
analysis of variance (ANOVA) was performed. When significant, the
Tukey test (p < 0.05) was used to assess statistical differences.
Furthermore, the data was subjected to multivariate analysis using
principal component analysis (PCA). The performance of the model was
evaluated based on accuracy and Kappa metrics. The statistical imple-
mentation was performed using R software, version 4.4.2.

Green (G) Blue (B) Grey

Fig. 3. Color characterization of oiti fruits (L. tomentosa) based on the Munsell color chart, decomposition into Red (R), Green (G), and Blue (B) bands, and grayscale

representation. Scale bar corresponds to 1 cm.
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3. Results and discussion
3.1. Colorimetric characterization of fruits

The fruits of L. tomentosa exhibited variations in epicarp coloration
across ripening stages, identified based on the Munsell color chart. The
original-colored images of the fruits and the decompositions into Red,
Green, and Blue bands, as well as the grayscale representation are rep-
resented in Fig. 3.

The decomposition of the RGB color bands revealed distinct patterns
capable of discriminating among fruit ripening stages (Fig. 4). The Red
band demonstrated a significant increase in intensity, varying from 37.7
(GY) to 107.2 (yYR), being the main indicator of changes in the fruits.
Similarly, the Green component also revealed an increase in average
intensity from GY to yYR (47.9; 54.2; 65.8, respectively), although less
markedly than the Red channel. Despite its relevance in distinguishing
green and yellowish hues, the Green channel was not efficient in
differentiating between the Ye and YR fruit ripening stages. Both the Red
(62.4) and Green (36.2) channels showed a reduction in the YR pixel
intensity. The mean of the RGB channels followed a similar trend,
reflecting the cumulative increase in pixel intensity from GY (37.0) to
yYR (63.0), followed by a decrease in YR (40.2).

Regardless of the ripening stage of L. tomentosa fruits, the Blue
channel demonstrated the lowest intensities (25.5; 22.0; 16.1; 22.1 for
GY, Ye, yYR, and YR, respectively), with low variability among treat-
ments and a reduced incidence of cool tones. In contrast to the Red and
Green channels, the Blue channel displayed an inverse pattern, with
declining intensity from GY to yYR, followed by a slight increase in YR.
Previous studies on Alphonso mango [37] and Swingle citrumelo [19]
also indicated that this channel was insufficient for differentiating
ripening stages.

The grayscale analysis revealed a progressive increase in brightness
from the GY stage (47.7) to yYR (85.3), followed by a decline in YR
(49.8). This pattern is associated with structural changes at the cellular
level and the accumulation of pigments such as carotenoids and an-
thocyanins, which increase light absorption and reduce reflectance,
thereby darkening the fruit’s skin [25,38]. In our study, the use of the
RGB system proved to be a practical and objective approach to charac-
terize L. tomentosa fruit ripening stages, overcoming the subjective
limitations of visual analysis. These findings corroborate with other

[\
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60

Pixel intensity
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20
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studies [27,19,25], which also evidenced the high capacity of the RGB
system to classify fruits in different ripening stages.

3.2. Morphometric characterization of fruits

The morphometric analysis of the fruits revealed discrete variations
among the analyzed parameters, revealing relative stability in the fruit
shape throughout maturation (Table 2). The variables perimeter (two-
dimensional contour length) and surface area (two-dimensional space
occupied by the fruit) demonstrated a significant trend of change as the
fruits ripened, especially between GY and YR, evidencing that matura-
tion is associated with a slight reduction in fruit size.

Parameters related to shape, such as aspect ratio and roundness,
showed expected variations, as they are inversely proportional. The
aspect ratio, which expresses fruit elongation, decreased from 1.52 +

Table 2

Morphometric characterization of oiti (L. tomentosa) fruits harvested at different
stages of ripening, characterized based on pericarp coloration using the Munsell
color chart.

Parameters Epicarp color of fruits Ccv
(%)
GY Ye yYR YR
Perimeter (cm)  15.72 + 14.33 + 14.29 + 14.37 + 3.37
1.19a 1.28b 1.31b 0.98 b
Surface area 17.97 + 15.30 + 15.37 + 15.21 + 7.43
(em?) 2.68a 2.47b 2.64b 2.09b
Aspect ratio 1.52 + 145+ 1.40 £ 1.44 + 3.08
0.10 a 0.13 ab 0.11b 0.13 ab
Roundness 0.66 + 0.70 + 0.72 + 0.70 + 3.01
0.05b 0.06 ab 0.05a 0.06 ab
Circularity 091 + 0.93 + 0.94 + 0.92 + 1.17
0.03 b 0.03a 0.03a 0.03 ab
Length (cm) 5.89 + 5.30 + 5.21 + 5.26 + 3.15
0.49a 0.59 b 0.56 b 0.43b
Width (cm) 3.87 + 3.66 + 373 + 3.67 + 4.74
0.33™ 0.27 0.32 0.30

*Means followed by the same letter do not differ statistically from each other
according to the Tukey test (p < 0.05). Values are represented as mean =+
standard deviation.

Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow-
Red (YR).

EGray mR ®mG BB O(R+G+B)/3

yYR YR

Fig. 4. Pixel intensity for each component of red (R), green (G), blue (B), average pixel value (R+G+B)/3 and gray scale for the color of oiti (L. tomentosa) fruits

harvested at different stages of ripening.

Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow-Red (YR).

Values are represented as mean =+ standard deviation.
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0.10 (GY) to 1.40 £+ 0.11 (yYR), indicating less elongated fruits in yYR.
In contrast, roundness increased from 0.66 + 0.05 (GY) to 0.72 + 0.05
(yYR), reflecting greater circularity in the latter. Circularity, which
ranges from O (elongated fruits) to 1 (completely circular), increased
slightly from GY to yYR, showing a slight reduction in the most mature
stage (YR). The length showed a slight reduction throughout matura-
tion, while the width remained stable, without significant variations.

Teixeira et al. [39], have already evidenced the stability in the length
and diameter of L. tomentosa fruits. Similarly, Monteiro et al. [10]
recorded average lengths (6.19 cm) and widths (3.3 cm) in fruits har-
vested in Jaboticabal-SP (Brazil), values compatible with those obtained
in this study. These data confirm that, despite subtle visual and struc-
tural changes, the main dimensions of the fruits remain stable during
ripening, making morphometric parameters ineffective to discriminate
against the ripening stages of oiti fruits.

3.3. Seedling quality assessment

The maturation stages of the fruits significantly influenced the vigor
of L. tomentosa seedlings (Table 3). Fruits in early maturation stages (GY)
exhibited the lowest percentages of seedling emergence (58 %), seedling
emergence speed index (ESI), main root length (MRL), shoot dry mass
(SDM), and Dickson Quality Index (DQI). On the other hand, more
mature fruits (YR) resulted in a higher percentage of seedling emergence
(88 %) and superior results for ESI, SDM, and DQI, indicating superiority
in the production of vigorous seedlings. The seedling emergence dy-
namics also varied among the maturation stages: GY fruits initiated the
process at 43 DAS, stabilizing at 71 DAS, while YR fruits initiated at 38
and stabilized at 77 DAS.

L. tomentosa fruits from different maturation stages, also identified
by epicarp colors, showed a high percentage of seedling emergence in
sand, but without difference between dark green wrinkled fruits (86 %)
and yellow fruits (95 %). Yellow fruits exhibited higher ESI, possibly due
to the lower epicarp hardness compared to dark green fruits [11].

Seedlings from yYR and YR fruits showed about 40 % more leaves
compared to those from gGY fruits (Table 3). There was no difference for
seedling height and stem diameter. YR fruits produced seedlings with a
higher average MRL (23.66 cm), although without difference in relation
to Ye and yYR. Advanced fruit maturation may favor root growth, albeit
with subtle variations.

The accumulated seedling biomass was also directly influenced by
the fruit maturation stage. Seedlings from seeds from yYR and YR fruits
showed higher RDM values, differing from GY and Ye, which exhibited

Table 3
Influence of fruit ripening stage on growth parameters of oiti (L. tomentosa)
seedlings.

Parameters Epicarp color of fruits CV (%)
GY Ye yYR YR

Seedling emergence (%) 58 c* 72b 85 ab 88a 9.7
Emergence speed index 0.25b 0.26 b 0.39a 0.40 a 10.8
Number of leaves 5b 5b 7 a 7a 10.3
Height (cm) 29.74™  28.44 31.28 31.03 9.9
Diameter (cm) 4.65™ 5.55 4.84 4.70 11.6
MRL (cm) 17.33b  20.83ab 21.15ab 23.66a 9.03
SDM (g seedling ) 6.29d 9.06 ¢ 13.26 b 1858a 83
RDM (g seedling™) 2.30b 2.63 b 3.32a 4.44 a 11.2
SDM partition (%) 73.67%  77.46 79.91 80.65 5.46
RDM partition (%) 26.33" 2254 20.09 19.35 10.2
DQI 0.94 c 1.36 b 1.58b 2.13a 11.4

* Means followed by the same letter do not differ statistically from each other
according to the Tukey test (p < 0.05). Values are represented as mean =+
standard deviation.

Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow-
Red (YR).

Main root length (MRL); Shoot dry mass (SDM); RDM = Root dry mass
(RDM); Dickson Quality Index (DQI)

Smart Agricultural Technology 12 (2025) 101091

the lowest values. YR fruits showed superior SDM (18.58 g seedling™),
while GY fruits produced seedlings with lower dry mass (6.29 g seed-
ling™). This behavior reflects the greater availability of reserves accu-
mulated in seeds from mature fruits, which were used to promote
greater initial development. Similar results were observed in Dovyalis
hebecarpa (Gardner) Warb. seeds, where seeds extracted from very
mature fruits favored the increase of RDM and SDM [40].

No differences were observed between biomass partitioning in the
shoot and root systems. In percentage terms, however, seedlings derived
from mature fruits (YR) allocated a greater proportion of biomass to the
shoot (80.65 %) compared to those derived from green fruits (GY),
which presented 73.67 %. Conversely, GY fruits directed a higher
amount of dry matter to the root system (26.33 %) compared to the
19.35 % observed in seedlings derived from YR fruits.

The fact that seeds contained in GY fruits originated seedlings with
lower dry matter allocation to the shoot may be associated with the
incomplete maturation of these seeds. In this regard, incomplete matu-
ration may be corroborated by the lower vigor presented by the seed-
lings, as evidenced by variables such as seedling emergence, emergence
speed index, number of leaves, MRL, SDM, RDM, and Dickson Quality
Index (Table 3). Less vigorous seedlings, with lower initial growth of the
root system compared to more vigorous ones, may, over time, allocate
drier biomass to the shoot, thereby reducing the shoot-to-root ratio.
Meanwhile, seeds derived from more mature fruits (YR) completed the
maturation process, resulting in more vigorous seedlings, as demon-
strated in Table 3. Gomes-Junior et al. [19] reported for Swingle cit-
rumelo seeds extracted from Green fruits exhibited lower vigor,
supported by variables such as first germination count, seedling emer-
gence, seedling dry mass, and seed vigor index (SVIS), when compared
to seeds from Greenish-Yellow and Yellow fruits.

The Dickson Quality Index (DQI) distinguished the performance of
seedlings derived from fruits at different maturation stages. Seedlings
obtained from GY fruits exhibited the lowest DQI (0.94), a result
consistent with the lower accumulation of biomass in both the shoot and
root systems. In contrast, the YR group presented the highest index value
(2.13), despite showing the highest shoot-to-root dry mass ratio (SDM/
RDM), indicating a disproportionate distribution of biomass favoring the
aerial part. This result demonstrates that, although the DQI penalizes
morphological imbalance, the substantial total biomass accumulation in
this group was sufficient to offset this effect and raise the index value.
Given that average height and collar diameter varied little between the
evaluated groups, the increase in DQI was associated with the amount of
accumulated biomass.

The DQI was calculated based on the ratio between the total dry mass
and the sum of two quotients: the height-to-diameter ratio (robustness)
and the SDM/RDM ratio. It is a dimensionless morphological variable
that integrates multiple attributes into a single value and is used as a
criterion for evaluating seedling quality. In this context, the higher the
DQI value, the higher the seedling quality, reflecting biomass accumu-
lation and partitioning, as well as robustness [41]. Thus fruit maturation
plays an important role in the production of vigorous and high-quality
seedlings. More mature fruits not only optimized emergence rates but
also favored shoot biomass allocation and balanced seedling
development.

3.4. Association between colorimetric parameters, morphological traits,
and seedling performance

Principal Component Analysis (PCA) was employed as an integrative
approach among colorimetric parameters, morphological traits, and
seedling performance, allowing the identification of relevant patterns
and the synthesis of interrelationships among the data obtained. PCA is a
widely used statistical tool for reducing the dimensionality of a dataset
while preserving most of the original variance [42]. In the present study,
PCA explained 67.64 % of the total variance, with 48.34 % attributed to
the first component (PC1) and 19.3 % to the second component (PC2)
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(Fig. 5). The morphological parameters of the fruits (width, surface area,
perimeter, length, aspect ratio) and the Blue component were the main
contributors to the variance explained by PC1. PC2 was influenced by
colorimetric parameters (Green and Red channels, RGB and brightness —
grayscale) and morphological traits (circularity and roundness).

The fruit groupings revealed clear separation patterns among
maturation stages. Fruits classified as GY, positioned on the right,
exhibited larger physical dimensions (perimeter, length, width, aspect
ratio, and area) and higher intensity in the Blue channel. The fruits of the
Ye group, located at the center of the graph, displayed intermediate
characteristics, suggesting they represent a transitional stage between
the other groups. The yYR group, located in the upper left corner, stood
out for presenting the highest average pixel intensity values (RGB),
especially in the Red channel, as well as greater brightness (Gray),
circularity, and roundness. These characteristics indicate that yYR fruits
already incorporate morphological and colorimetric attributes typical of
mature fruits, although they are less associated with seedling perfor-
mance variables. This suggests that such fruits have not yet reached a
sufficient maturation stage for the production of vigorous seedlings. In
contrast, the YR fruits, located in the lower left corner, showed an as-
sociation with seedling performance variables such as root length (RL),
shoot dry mass (SDM), root dry mass (RDM), and Dickson Quality Index
(DQI). These results reinforced that the advanced maturation stage (YR)
was the most suitable for the production of vigorous seedlings, as it
combined mature fruit colorimetric attributes with superior perfor-
mance of L. tomentosa seedlings.

Thus the morphological parameters of the fruits are important
markers of the variations that occur throughout maturation [16]; how-
ever, we observed that for L. tomentosa, these parameters exhibited low

variation across maturation stages and were not efficient in differenti-
ating between stages (as shown in section 3.2). In contrast, the colori-
metric attributes (section 3.1) and seedling performance variables
(section 3.3) were able to capture the differences between stages,
discriminating them accurately. Thus, PCA efficiently synthesized the
integrated contribution of the three categories of variables (colorimetry,
morphology, and seedling performance). The dataset presented thus far
reinforced the role of colorimetry as a predictive and objective tool. This
provided methodological support for the subsequent application of LDA
algorithm, aimed at classifying fruits according to maturation stages and
standardizing the seedling production process.

3.5. Classification model basED ON LINEAR DISCRIMINANT ANALYsis

LDA is a statistical technique used for classification problems, which
aims to find the directions in the multidimensional space that maximize
the variance between classes and minimize the variance within the same
class simultaneously [43]. In this study, LDA was applied to classify the
maturation stages of L. tomentosa fruits based on colorimetric parame-
ters. Both PCA and LDA used the same dataset. The model reduced the
dimensionality of the original data and projected the variations into two
main axes [Function 1: (7.805 x Gray) + (-23.889 x Red) + (-6.148 x
Green) + (-2.428 x Blue) + (16.478 x RGB/3); Function 2: (-2.154 x
Gray) + (-462.138 x Red) + (-219.901 x Green) + (-82.416 x Blue) +
(605.674 x RGB/3)], which explained 85.37 % and 12.96 % of the
variance, respectively (Fig. 6). Together, the axes accumulated 98.33 %
of the total variance, reflecting that the model captured almost all the
relevant information to differentiate the maturation stages.

In the scatterplot, each point represents a fruit classified by the
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model, while the ellipses delimit the data concentration of each class.
The arrangement of the classes by LDA (Fig. 6) corroborated the
groupings observed in PCA (Fig. 5). The GY class was clearly separated
on the right, while the yYR and YR classes were arranged on the left,
which indicated that the model correctly identified the fruits belonging
to these maturation stages. Meanwhile, the Ye class was highlighted in
the center, which reflected the high similarity with the neighboring
classes. This behavior, typical of transition stages, makes it difficult to
differentiate these fruits, as observed in studies with cherry tomatoes in
the half-ripe stage [42]. Avila et al. [44] stated that a portion of studies
involving image analysis to estimate fruit maturity are unable to accu-
rately distinguish intermediate maturation stages. This finding is also
ratified by the confusion matrix (Table 4).

The confusion matrix was used to evaluate the performance of the
LDA model, comparing the classes predicted by it with the actual classes
(Table 4). The diagonal elements (in bold) indicate the correct classifi-
cations, while the other values represent classification errors. The GY,
yYR, and YR classes were classified with 100 % accuracy, while the Ye
class showed 60 % accuracy. About 40 % of the Ye fruits were errone-
ously assigned to other classes, with 20 % to GY; 10 % to yYR and 10 %
to YR. This confirms the greater variability of colorimetric parameters
for Ye fruits, making their precise separation difficult, as verified in
strawberry fruits in intermediate stages [25].

The performance of the model was high, with an accuracy of 90.48
%, indicating that 9 out of 10 fruits were correctly classified. The Kappa
index, of 87.17 %, reinforced the model’s reliability by indicating a high

Table 4
Confusion matrix for the prediction of oiti (L. tomentosa) fruit ripening stages,
characterized based on pericarp coloration using the Munsell color chart.

Classes GY Ye yYR YR
%
GY 100.0 20.0 0 0
Ye 0 60.0 0 0
yYR 0 10.0 100.0 0
YR 0 10.0 0 100.0
Accuracy (%) 90.48
Kappa (%) 87.17
p-value 1.18*101°

Bold values indicate correct identification performance.
Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow-
Red (YR).

agreement between the predicted classes and the actual values, adjust-
ing for chance. Furthermore, an extremely low p-value (1.18%1071%)
confirmed the separation between classes was statistically significant.
Similar studies, employing LDA with RGB average intensity data, re-
ported error rates of 17.5 % for mangoes in three maturation stages [24]
and 33.8 % for four apple stages [17].

The results highlighted the efficiency of LDA in classifying the
maturation stages of L. tomentosa fruits, especially for the GY, yYR, and
YR classes. The lower accuracy for the Ye class emphasizes the need for
complementary investigations, such as the texture and chemical
composition of the fruits, to increase the model’s precision.

4. Conclusions

For the first time, itt was proposed a robust and non-invasive
methodology for the selection of L. tomentosa fruits for seedling pro-
duction, combining image analysis and machine learning techniques to
provide objective parameters for the classification of maturation stages.

The characterization of each maturation class in the Munsell color
chart and its relationship with variations in epicarp coloration (RGB
system) and seedling performance was evident. Immature fruits, char-
acterized by a greenish coloration (Greenish Green-Yellow), exhibited
lower percentages of seedling emergence, emergence speed, and seed-
ling development. Conversely, fruits at more advanced maturation
stages yielded superior seedling performance, indicating Yellow-Red
fruits as the most suitable to produce high-quality seedlings. Overall,
morphological parameters remained stable throughout maturation,
rendering them ineffective for discriminating between the ripening
stages of oiti fruits.

The utility of colorimetric analysis integrated with machine learning
algorithms to optimize fruit selection processes. We specifically exam-
ined the predictive capacity of extracted colorimetric features for
discerning fruit ripening stages, employing Linear Discriminant Analysis
for model development and validation. The resultant classification
model demonstrated robust performance across diverse maturation
stages, exhibiting high accuracy, particularly for fruits categorized as
Greenish-Green-Yellow, Yellow-Yellow-Red, and Yellow-Red. The pro-
posed evaluation approach has potential to boost the rational and
economically sustainable cultivation of L. tomentosa plants, by enabling
the rapid and practical detection of propagative material quality,
regardless of maturation time knowledge.
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Certain limitations persists, as our analyses relied on a relatively
small sample size, and all image acquisitions occurred under controlled
environmental conditions, which may limit the generalizability of the
findings to real-world field scenarios. To improve the applicability and
robustness of the proposed approach, future research should incorporate
fruit samples derived from diverse mother plant populations and
conduct image acquisition under natural field conditions. Furthermore,
exploring alternative color systems beyond RGB, such as HSV (Hue,
Saturation, Value), CMYK (Cyan, Magenta, Yellow, Key/Black), and
CIELab (Luminosity, Red-Green axis, Yellow-Blue axis) may confer su-
perior sensitivity to discrete fruit ripening stages.

Complementary assessments of fruit traits - including chemical
composition, firmness, weight, and texture - are also crucial, as they
could provide more accurate indicators of ripening and support the
refinement of predictive algorithms. These advancements would not
only strengthen the reliability of the model but also lay the foundation
for developing practical tools, including mobile applications for in-field
use by producers. Moreover, the integration of these data holds the
potential to the establishment of a comprehensive database for mapping
and characterizing L. tomentosa populations, thereby supporting more
efficient seedling production strategies and advancing our knowledge of
the species’ biodiversity.
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