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A B S T R A C T

Licania tomentosa is a widely distributed species in Brazil, commonly used in urban landscaping and environ
mental restoration. Despite its potential, understanding the relationship between fruit maturation and seedling 
quality remains limited. This study aimed to evaluate the relationship between maturation stages - classified by 
epicarp coloration - and seedling performance through RGB colorimetric analysis, fruit morphometry, and the 
application of machine learning algorithms. Fruits were collected from mother trees and classified into four color 
stages based on the Munsell color chart. Digital images were analyzed to extract RGB values and morphometric 
parameters of the fruits using ImageJ® software. Subsequently, seedling emergence, biometric attributes, 
biomass accumulation, and the Dickson Quality Index (DQI) were evaluated. Yellow-Red fruits produced seed
lings with higher emergence rates, greater shoot and root biomass accumulation, and higher DQI values, indi
cating greater seedling vigor. In contrast, Greenish Green-Yellow fruits resulted in less vigorous seedlings. The 
Red band was the main indicator of changes in the fruits. Morphometric parameters alone were insufficient to 
discriminate the maturation stages. Linear Discriminant Analysis correctly classified 90.48 % of the fruits ac
cording to their maturation stage. The integration of colorimetric data with machine learning proved to be an 
effective, non-destructive, and low-cost approach for optimizing seed selection. To enhance the predictive ac
curacy of the model it is recommended to expand the dataset under natural conditions and explore alternative 
color systems and complementary fruit traits.

1. Introduction

The family Chrysobalanaceae comprises 20 genera and more than 
500 species of shrubs and trees, distributed across tropical and sub
tropical regions of the world [1,2]. Among these genera, Licania stands 
out as the most prominent, occurring from the United States to South 
America [3]. The species Licania tomentosa (Benth) Frisch, popularly 
known as oiti, is widely found in Brazil, with greater incidence in the 
Northeast Region [4]. The height of L. tomentosa ranges between 6 and 
15 m, with a trunk diameter between 30 to 50 cm. Flowering occurs 
between the months of June and August, while fruiting is concentrated 
between January and March. Its dense crown, with high shading ca
pacity, is one of the main factors justifying its widespread use in 

landscaping projects [5].
The species occupies a prominent position in the urban landscaping 

of squares and parks [6–8]; in the restoration of degraded areas [9]; and 
in the pharmaceutical industry [1]. It also has food value, with emphasis 
on the concentration of bioactive compounds such as polyphenols and 
flavonoids [4].

Despite its various applications, knowledge about the agronomic 
aspects of L. tomentosa is still limited. Studies on fruit and seed 
morphometry [10], seedling development [11] and management in 
different productive environments [12] are still incipient. One of the 
persistent challenges in seedling production is the absence of stan
dardized criteria for fruit selection, a factor that directly affects vigor 
and uniformity. Since the species is multiplied by seeds contained in 
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drupe-type fruits, which are used for sowing without the need for dep
ulping [13], the correct identification of the fruit maturation stage be
comes essential to better understand this specie and to ensure the quality 
of the seeds.

In practice, the absence of standardization leads implies for seedling 
production. Samples composed of seeds from fruits at different stages of 
maturation result in seedlings with distinct physiological performance, 
which compromises uniformity and increases operational costs due to 
the need for replanting and longer cultivation time. Moreover, less 
vigorous seedlings exhibit lower survival and adaptation rates in the 
field, negatively affecting the outcomes of urban landscaping and 
environmental restoration programs [14].

The drupes of L. tomentosa have an elliptical shape, ranging from 12 
to 16 cm in length. During maturation, the epicarp, which is smooth and 
thin, displays a coloration that varies from green (immature) to yellow/ 
orange (mature). The mesocarp is fleshy, with a bittersweet flavor and 
yellow color, while the endocarp is membranous and light-colored. The 
seed, in turn, presents a high lipid content [10,15]. The fruit maturation 
process involves a series of morphological, physiological, and 
biochemical transformations [16]. Among the most evident visual in
dicators, the variation in epicarp coloration stands out, directly associ
ated with chlorophyll degradation (green) and the synthesis of 
carotenoids (yellow) and anthocyanins (red) [17]. Such colorimetric 
changes can be used as relevant visual indicators to infer the fruit 
maturation stage [18]. However, human perception of color is subject to 
the interaction between brightness and intensity, which can result in 
subjective interpretations of the shades of a single color, compromising 
standardization and reproducibility of the process [19,20].

Computer vision systems, such as color analysis methods, are rele
vant, objective, and standardized alternatives [21], capable of over
coming the limitations inherent to human visual analysis and ensuring 
greater precision in fruit selection. Among the available techniques, the 
RGB (Red, Green, Blue) color system stands out as a widely used tool for 
fruit color analysis [22,19,23]. The RGB color channels operate at 
wavelengths of 700, 546, and 435 nm, respectively [21]. RGB usage 
requires simple algorithms, making it more cost-effective and employed 
for different types of chromatic analyses [24]. Its effectiveness has 
already been proven in detecting the maturation stage of strawberries 
[25], naval oranges [26], tomato [27], and Swingle citrumelo [19].

Additionally, recent advances have incorporated machine learning 
algorithms to classify maturation stages from digital images, enabling 
scalable, low-cost, and non-destructive approaches [20,28]. Linear 
Discriminant Analysis (LDA) is an algorithm used in situations where the 
analyzed objects present very similar visual characteristics, making it 
difficult for human vision to distinguish them. In such cases, LDA proves 
capable of identifying these similarities and accurately separating the 
objects [29].

LDA aims to find a linear combination of attributes that characterize 
the objects, separating them into classes. For this purpose, dispersion 
matrix analysis is used, which allows dimensionality reduction of the 
data without compromising the maximum separation between the 
classes [30]. LDA has demonstrated high performance in classifying six 
types of apples, achieving 98 % accuracy [31]. In the study conducted by 
Zulkifli et al., [32], LDA was the most efficient classifier among four 
evaluated methods, achieving 83.5 % accuracy in classifying different 
maturation stages of papaya.

Despite the relevant advances in these methodologies, to the authors’ 
knowledge, there are still no studies that relate fruit coloration to the 
seedling performance of L. tomentosa. The objective of this study was to 
evaluate the relationship between the fruit maturation stage of 
L. tomentosa and seedling quality. To this end, we used data from 
colorimetric analysis, morphological characteristics of the fruits, and 
seedling performance. Based on this dataset, we applied machine 
learning algorithms as a strategy for fruit selection, with the aim of 
ensuring greater precision and standardization in the production process 
of high-quality seedlings of the species.

2. Material and Methods

2.1. Fruit collection and material preparation

The study was conducted with intact and healthy fruits from ten 
matrix plants located at the Federal Institute of Piauí – Uruçuí Campus, 
Brazil (7◦ 16′ 42" S 44◦ 30′ 22" W, altitude of 359 m above the sea level). 
Manual collection occurred after spontaneous fruit drop. The region’s 
climate is Aw-Köppen, tropical with abundant rainfall in the summer, 
with an average annual precipitation of 1069 mm and an average annual 
temperature of 27.2 ◦C. The fruits were classified according to epicarp 
coloration using the Munsell color chart for plant tissues (Gretag- 
Macbeth, New Winsor, NY, USA), which considers the parameters of 
hue, value, and chroma (Table 1).

2.2. Morpho-colorimetric characterization

For colorimetric analysis, photographs of 36 fruits of each coloration 
were captured with a digital camera (Nikon Coolpix S6200, 16 Mpx®), 
equipped with a charge-coupled device (CCD). Artificial lighting was 
provided by four fluorescent lamps (40W; 5250 K color temperature). 
The images, in Tagged Image File Format (TIFF) and 350 dpi resolution, 
were analyzed using ImageJ® software, version 1.54m [33]. The soft
ware allowed the extraction of pixel intensity values from the RGB color 
components (bands), and the grayscale. In addition to the average pixel 
intensity, which ranges from 0 to 255, was calculated using the ratio (R 
+ G+ B)/3.

The original image of each fruit was subdivided into three 8-bit 
grayscale images, containing the R, G, and B components of the image 
pixels (bands). Furthermore, the software was also used to obtain 
morphological descriptors of the fruits, corresponding to perimeter, 
surface area, aspect ratio, roundness, and circularity (Fig. 1).

The perimeter represented the length of the two-dimensional con
tour of the fruit (cm). The surface area corresponded to the amount of 
two-dimensional space of the fruit, expressed in cm2 after pixel con
version. The aspect ratio represented the ratio between the major and 
minor diameters of the ellipse that circumscribes the fruit, indicating the 
degree of elongation. Roundness reflected the inverse of the aspect ratio, 
calculated by the Eq. (1): 

R = 4 ×
area

π × largest diameter2. (1) 

Lower values indicate more circular fruits. Circularity corresponded 
to the degree of approximation of the fruit to a circular shape, calculated 
by Eq. (2): 

C = 4π ×
area

perimeter2 (2) 

Table 1 
Epicarp color characterization of oiti (L. tomentosa) fruits through visual clas
sification by Munsell color chart.

Epicarp color Hue Value and Chroma

Greenish Green- 
Yellow

7.5 GY 3/4* = low luminosity / moderate 
saturation

Yellow 5.0 Ye 6/8 = moderate luminosity / high 
saturation

Yellow Yellow-Red 7.5 
yYR

6/10 = moderate luminosity / high 
saturation

Yellow-Red 5.0 YR 4/8 = low luminosity / high saturation

* The first number represents the value, which indicates the lightness of the 
color on a scale from 0 (black) to 10 (white); the second number represents the 
chroma, which indicates the intensity or saturation of the color, where higher 
values indicate purer and more intense colors.
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Values ranged from 0 (elongated shape) to 1 (perfect circle). 
Complementarily, the length (cm) and width (cm) of the fruits were also 
determined using ImageJ®.

2.3. Seedling production

After classification, 100 fruits of each epicarp coloration were sown 
at a depth of 3 cm in plastic boxes containing medium-textured sand (5 
dm3), arranged in a greenhouse (35 % shading). The substrate water 

Fig. 1. Extracting morphological descriptors of oiti (Licania tomentosa Benth) fruits through image analysis: perimeter (a), surface area (b), aspect ratio (c), roundness 
(d), and circularity (e).

Fig. 2. Overview of the dataset acquisition and analysis workflow for model development.
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content was adjusted daily to maintain “pot capacity” [34]. The relative 
air humidity was around 65 %, and the average temperature was 24.8 
◦C, monitored with a digital thermo-hygrometer (Akso, model AK632) 
from seedling emergence to seedling evaluation. The percentage of 
emergence and the seedling emergence speed index – ESI [35] were 
recorded daily until stabilization, according to the Eq. (3): 

ESI =
∑ nD

D
(3) 

where n is the number of emerged seedlings on day D; and D is the 
number of days after sowing.

At 80 days after sowing (DAS), four replicates of ten seedlings per 
treatment were randomly collected for measurement of the following 
parameters: number of leaves (NL); shoot height and main root length 
(RL), using a graduated ruler (cm); stem diameter, measured using a 
caliper (cm). The shoot dry mass (SDM) and root system dry mass (RDM) 
were determined using an analytical balance (g seedling-1), after drying 
in a forced-air oven at 65 ◦C for 72 h. Subsequently, the biomass 
partition for shoot and root system was determined. Finally, the Dickson 
Quality Index (DQI) was calculated, according to the Eq. (4) proposed by 
[36]: 

DQI =
Total dry mass

(
Height

Diameter

)

+

(
SDM
RDM

) (4) 

2.4. Classification of fruits based on colorimetric parameters

A maturation stage classification model was developed using tradi
tional machine learning techniques based on Linear Discriminant 
Analysis (LDA). A database consisting of the colorimetric variables ob
tained from the evaluated fruits (n = 144) was established, which was 
randomly subdivided into two sets: 70 % for model training and 30 % for 
performance testing. The core methodological steps involved in the 
acquisition and analysis of the dataset, which underpinned the devel
opment of the model through a machine learning approach, are pre
sented in Fig. 2.

2.5. Statistical analysis

A completely randomized experimental design was adopted, 
considering four categories of epicarp coloration and four replicates. 
After verifying the normality of the data using the Shapiro-Wilk test, 
analysis of variance (ANOVA) was performed. When significant, the 
Tukey test (p ≤ 0.05) was used to assess statistical differences. 
Furthermore, the data was subjected to multivariate analysis using 
principal component analysis (PCA). The performance of the model was 
evaluated based on accuracy and Kappa metrics. The statistical imple
mentation was performed using R software, version 4.4.2.

Fig. 3. Color characterization of oiti fruits (L. tomentosa) based on the Munsell color chart, decomposition into Red (R), Green (G), and Blue (B) bands, and grayscale 
representation. Scale bar corresponds to 1 cm.
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3. Results and discussion

3.1. Colorimetric characterization of fruits

The fruits of L. tomentosa exhibited variations in epicarp coloration 
across ripening stages, identified based on the Munsell color chart. The 
original-colored images of the fruits and the decompositions into Red, 
Green, and Blue bands, as well as the grayscale representation are rep
resented in Fig. 3.

The decomposition of the RGB color bands revealed distinct patterns 
capable of discriminating among fruit ripening stages (Fig. 4). The Red 
band demonstrated a significant increase in intensity, varying from 37.7 
(GY) to 107.2 (yYR), being the main indicator of changes in the fruits. 
Similarly, the Green component also revealed an increase in average 
intensity from GY to yYR (47.9; 54.2; 65.8, respectively), although less 
markedly than the Red channel. Despite its relevance in distinguishing 
green and yellowish hues, the Green channel was not efficient in 
differentiating between the Ye and YR fruit ripening stages. Both the Red 
(62.4) and Green (36.2) channels showed a reduction in the YR pixel 
intensity. The mean of the RGB channels followed a similar trend, 
reflecting the cumulative increase in pixel intensity from GY (37.0) to 
yYR (63.0), followed by a decrease in YR (40.2).

Regardless of the ripening stage of L. tomentosa fruits, the Blue 
channel demonstrated the lowest intensities (25.5; 22.0; 16.1; 22.1 for 
GY, Ye, yYR, and YR, respectively), with low variability among treat
ments and a reduced incidence of cool tones. In contrast to the Red and 
Green channels, the Blue channel displayed an inverse pattern, with 
declining intensity from GY to yYR, followed by a slight increase in YR. 
Previous studies on Alphonso mango [37] and Swingle citrumelo [19] 
also indicated that this channel was insufficient for differentiating 
ripening stages.

The grayscale analysis revealed a progressive increase in brightness 
from the GY stage (47.7) to yYR (85.3), followed by a decline in YR 
(49.8). This pattern is associated with structural changes at the cellular 
level and the accumulation of pigments such as carotenoids and an
thocyanins, which increase light absorption and reduce reflectance, 
thereby darkening the fruit’s skin [25,38]. In our study, the use of the 
RGB system proved to be a practical and objective approach to charac
terize L. tomentosa fruit ripening stages, overcoming the subjective 
limitations of visual analysis. These findings corroborate with other 

studies [27,19,25], which also evidenced the high capacity of the RGB 
system to classify fruits in different ripening stages.

3.2. Morphometric characterization of fruits

The morphometric analysis of the fruits revealed discrete variations 
among the analyzed parameters, revealing relative stability in the fruit 
shape throughout maturation (Table 2). The variables perimeter (two- 
dimensional contour length) and surface area (two-dimensional space 
occupied by the fruit) demonstrated a significant trend of change as the 
fruits ripened, especially between GY and YR, evidencing that matura
tion is associated with a slight reduction in fruit size.

Parameters related to shape, such as aspect ratio and roundness, 
showed expected variations, as they are inversely proportional. The 
aspect ratio, which expresses fruit elongation, decreased from 1.52 ±

Fig. 4. Pixel intensity for each component of red (R), green (G), blue (B), average pixel value (R+G+B)/3 and gray scale for the color of oiti (L. tomentosa) fruits 
harvested at different stages of ripening. 
Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow-Red (YR). 
Values are represented as mean ± standard deviation.

Table 2 
Morphometric characterization of oiti (L. tomentosa) fruits harvested at different 
stages of ripening, characterized based on pericarp coloration using the Munsell 
color chart.

Parameters Epicarp color of fruits CV 
(%)

GY Ye yYR YR

Perimeter (cm) 15.72 ±
1.19 a

14.33 ±
1.28 b

14.29 ±
1.31 b

14.37 ±
0.98 b

3.37

Surface area 
(cm2)

17.97 ±
2.68 a

15.30 ±
2.47 b

15.37 ±
2.64 b

15.21 ±
2.09 b

7.43

Aspect ratio 1.52 ±
0.10 a

1.45 ±
0.13 ab

1.40 ±
0.11 b

1.44 ±
0.13 ab

3.08

Roundness 0.66 ±
0.05 b

0.70 ±
0.06 ab

0.72 ±
0.05 a

0.70 ±
0.06 ab

3.01

Circularity 0.91 ±
0.03 b

0.93 ±
0.03 a

0.94 ±
0.03 a

0.92 ±
0.03 ab

1.17

Length (cm) 5.89 ±
0.49 a

5.30 ±
0.59 b

5.21 ±
0.56 b

5.26 ±
0.43 b

3.15

Width (cm) 3.87 ±
0.33ns

3.66 ±
0.27

3.73 ±
0.32

3.67 ±
0.30

4.74

*Means followed by the same letter do not differ statistically from each other 
according to the Tukey test (p < 0.05). Values are represented as mean ±
standard deviation.
Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow- 
Red (YR).
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0.10 (GY) to 1.40 ± 0.11 (yYR), indicating less elongated fruits in yYR. 
In contrast, roundness increased from 0.66 ± 0.05 (GY) to 0.72 ± 0.05 
(yYR), reflecting greater circularity in the latter. Circularity, which 
ranges from 0 (elongated fruits) to 1 (completely circular), increased 
slightly from GY to yYR, showing a slight reduction in the most mature 
stage (YR). The length showed a slight reduction throughout matura
tion, while the width remained stable, without significant variations.

Teixeira et al. [39], have already evidenced the stability in the length 
and diameter of L. tomentosa fruits. Similarly, Monteiro et al. [10] 
recorded average lengths (6.19 cm) and widths (3.3 cm) in fruits har
vested in Jaboticabal-SP (Brazil), values compatible with those obtained 
in this study. These data confirm that, despite subtle visual and struc
tural changes, the main dimensions of the fruits remain stable during 
ripening, making morphometric parameters ineffective to discriminate 
against the ripening stages of oiti fruits.

3.3. Seedling quality assessment

The maturation stages of the fruits significantly influenced the vigor 
of L. tomentosa seedlings (Table 3). Fruits in early maturation stages (GY) 
exhibited the lowest percentages of seedling emergence (58 %), seedling 
emergence speed index (ESI), main root length (MRL), shoot dry mass 
(SDM), and Dickson Quality Index (DQI). On the other hand, more 
mature fruits (YR) resulted in a higher percentage of seedling emergence 
(88 %) and superior results for ESI, SDM, and DQI, indicating superiority 
in the production of vigorous seedlings. The seedling emergence dy
namics also varied among the maturation stages: GY fruits initiated the 
process at 43 DAS, stabilizing at 71 DAS, while YR fruits initiated at 38 
and stabilized at 77 DAS.

L. tomentosa fruits from different maturation stages, also identified 
by epicarp colors, showed a high percentage of seedling emergence in 
sand, but without difference between dark green wrinkled fruits (86 %) 
and yellow fruits (95 %). Yellow fruits exhibited higher ESI, possibly due 
to the lower epicarp hardness compared to dark green fruits [11].

Seedlings from yYR and YR fruits showed about 40 % more leaves 
compared to those from gGY fruits (Table 3). There was no difference for 
seedling height and stem diameter. YR fruits produced seedlings with a 
higher average MRL (23.66 cm), although without difference in relation 
to Ye and yYR. Advanced fruit maturation may favor root growth, albeit 
with subtle variations.

The accumulated seedling biomass was also directly influenced by 
the fruit maturation stage. Seedlings from seeds from yYR and YR fruits 
showed higher RDM values, differing from GY and Ye, which exhibited 

the lowest values. YR fruits showed superior SDM (18.58 g seedling⁻¹), 
while GY fruits produced seedlings with lower dry mass (6.29 g seed
ling⁻¹). This behavior reflects the greater availability of reserves accu
mulated in seeds from mature fruits, which were used to promote 
greater initial development. Similar results were observed in Dovyalis 
hebecarpa (Gardner) Warb. seeds, where seeds extracted from very 
mature fruits favored the increase of RDM and SDM [40].

No differences were observed between biomass partitioning in the 
shoot and root systems. In percentage terms, however, seedlings derived 
from mature fruits (YR) allocated a greater proportion of biomass to the 
shoot (80.65 %) compared to those derived from green fruits (GY), 
which presented 73.67 %. Conversely, GY fruits directed a higher 
amount of dry matter to the root system (26.33 %) compared to the 
19.35 % observed in seedlings derived from YR fruits.

The fact that seeds contained in GY fruits originated seedlings with 
lower dry matter allocation to the shoot may be associated with the 
incomplete maturation of these seeds. In this regard, incomplete matu
ration may be corroborated by the lower vigor presented by the seed
lings, as evidenced by variables such as seedling emergence, emergence 
speed index, number of leaves, MRL, SDM, RDM, and Dickson Quality 
Index (Table 3). Less vigorous seedlings, with lower initial growth of the 
root system compared to more vigorous ones, may, over time, allocate 
drier biomass to the shoot, thereby reducing the shoot-to-root ratio. 
Meanwhile, seeds derived from more mature fruits (YR) completed the 
maturation process, resulting in more vigorous seedlings, as demon
strated in Table 3. Gomes-Junior et al. [19] reported for Swingle cit
rumelo seeds extracted from Green fruits exhibited lower vigor, 
supported by variables such as first germination count, seedling emer
gence, seedling dry mass, and seed vigor index (SVIS), when compared 
to seeds from Greenish-Yellow and Yellow fruits.

The Dickson Quality Index (DQI) distinguished the performance of 
seedlings derived from fruits at different maturation stages. Seedlings 
obtained from GY fruits exhibited the lowest DQI (0.94), a result 
consistent with the lower accumulation of biomass in both the shoot and 
root systems. In contrast, the YR group presented the highest index value 
(2.13), despite showing the highest shoot-to-root dry mass ratio (SDM/ 
RDM), indicating a disproportionate distribution of biomass favoring the 
aerial part. This result demonstrates that, although the DQI penalizes 
morphological imbalance, the substantial total biomass accumulation in 
this group was sufficient to offset this effect and raise the index value. 
Given that average height and collar diameter varied little between the 
evaluated groups, the increase in DQI was associated with the amount of 
accumulated biomass.

The DQI was calculated based on the ratio between the total dry mass 
and the sum of two quotients: the height-to-diameter ratio (robustness) 
and the SDM/RDM ratio. It is a dimensionless morphological variable 
that integrates multiple attributes into a single value and is used as a 
criterion for evaluating seedling quality. In this context, the higher the 
DQI value, the higher the seedling quality, reflecting biomass accumu
lation and partitioning, as well as robustness [41]. Thus fruit maturation 
plays an important role in the production of vigorous and high-quality 
seedlings. More mature fruits not only optimized emergence rates but 
also favored shoot biomass allocation and balanced seedling 
development.

3.4. Association between colorimetric parameters, morphological traits, 
and seedling performance

Principal Component Analysis (PCA) was employed as an integrative 
approach among colorimetric parameters, morphological traits, and 
seedling performance, allowing the identification of relevant patterns 
and the synthesis of interrelationships among the data obtained. PCA is a 
widely used statistical tool for reducing the dimensionality of a dataset 
while preserving most of the original variance [42]. In the present study, 
PCA explained 67.64 % of the total variance, with 48.34 % attributed to 
the first component (PC1) and 19.3 % to the second component (PC2) 

Table 3 
Influence of fruit ripening stage on growth parameters of oiti (L. tomentosa) 
seedlings.

Parameters Epicarp color of fruits CV (%)

GY Ye yYR YR

Seedling emergence (%) 58 c* 72 b 85 ab 88 a 9.7
Emergence speed index 0.25 b 0.26 b 0.39 a 0.40 a 10.8
Number of leaves 5 b 5 b 7 a 7 a 10.3
Height (cm) 29.74ns 28.44 31.28 31.03 9.9
Diameter (cm) 4.65ns 5.55 4.84 4.70 11.6
MRL (cm) 17.33 b 20.83 ab 21.15 ab 23.66 a 9.03
SDM (g seedling -1) 6.29 d 9.06 c 13.26 b 18.58 a 8.3
RDM (g seedling-1) 2.30 b 2.63 b 3.32 a 4.44 a 11.2
SDM partition (%) 73.67ns 77.46 79.91 80.65 5.46
RDM partition (%) 26.33ns 22.54 20.09 19.35 10.2
DQI 0.94 c 1.36 b 1.58 b 2.13 a 11.4

* Means followed by the same letter do not differ statistically from each other 
according to the Tukey test (p < 0.05). Values are represented as mean ±
standard deviation. 

Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow- 
Red (YR). 

Main root length (MRL); Shoot dry mass (SDM); RDM = Root dry mass 
(RDM); Dickson Quality Index (DQI)
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(Fig. 5). The morphological parameters of the fruits (width, surface area, 
perimeter, length, aspect ratio) and the Blue component were the main 
contributors to the variance explained by PC1. PC2 was influenced by 
colorimetric parameters (Green and Red channels, RGB and brightness – 
grayscale) and morphological traits (circularity and roundness).

The fruit groupings revealed clear separation patterns among 
maturation stages. Fruits classified as GY, positioned on the right, 
exhibited larger physical dimensions (perimeter, length, width, aspect 
ratio, and area) and higher intensity in the Blue channel. The fruits of the 
Ye group, located at the center of the graph, displayed intermediate 
characteristics, suggesting they represent a transitional stage between 
the other groups. The yYR group, located in the upper left corner, stood 
out for presenting the highest average pixel intensity values (RGB), 
especially in the Red channel, as well as greater brightness (Gray), 
circularity, and roundness. These characteristics indicate that yYR fruits 
already incorporate morphological and colorimetric attributes typical of 
mature fruits, although they are less associated with seedling perfor
mance variables. This suggests that such fruits have not yet reached a 
sufficient maturation stage for the production of vigorous seedlings. In 
contrast, the YR fruits, located in the lower left corner, showed an as
sociation with seedling performance variables such as root length (RL), 
shoot dry mass (SDM), root dry mass (RDM), and Dickson Quality Index 
(DQI). These results reinforced that the advanced maturation stage (YR) 
was the most suitable for the production of vigorous seedlings, as it 
combined mature fruit colorimetric attributes with superior perfor
mance of L. tomentosa seedlings.

Thus the morphological parameters of the fruits are important 
markers of the variations that occur throughout maturation [16]; how
ever, we observed that for L. tomentosa, these parameters exhibited low 

variation across maturation stages and were not efficient in differenti
ating between stages (as shown in section 3.2). In contrast, the colori
metric attributes (section 3.1) and seedling performance variables 
(section 3.3) were able to capture the differences between stages, 
discriminating them accurately. Thus, PCA efficiently synthesized the 
integrated contribution of the three categories of variables (colorimetry, 
morphology, and seedling performance). The dataset presented thus far 
reinforced the role of colorimetry as a predictive and objective tool. This 
provided methodological support for the subsequent application of LDA 
algorithm, aimed at classifying fruits according to maturation stages and 
standardizing the seedling production process.

3.5. Classification model basED ON LINEAR DISCRIMINANT ANALYsis

LDA is a statistical technique used for classification problems, which 
aims to find the directions in the multidimensional space that maximize 
the variance between classes and minimize the variance within the same 
class simultaneously [43]. In this study, LDA was applied to classify the 
maturation stages of L. tomentosa fruits based on colorimetric parame
ters. Both PCA and LDA used the same dataset. The model reduced the 
dimensionality of the original data and projected the variations into two 
main axes [Function 1: (7.805 × Gray) + (-23.889 × Red) + (-6.148 ×
Green) + (-2.428 × Blue) + (16.478 × RGB/3); Function 2: (-2.154 ×
Gray) + (-462.138 × Red) + (-219.901 × Green) + (-82.416 × Blue) +
(605.674 × RGB/3)], which explained 85.37 % and 12.96 % of the 
variance, respectively (Fig. 6). Together, the axes accumulated 98.33 % 
of the total variance, reflecting that the model captured almost all the 
relevant information to differentiate the maturation stages.

In the scatterplot, each point represents a fruit classified by the 

Fig. 5. Principal component analysis showing the distribution of oiti fruits (L. tomentosa) based on colorimetric, morphological, and physiological variables. 
Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow-Red (YR); Seedling emergence (EMG); Emergence speed index (ESI); Number of leaves 
(NL); Main root length (MRL); Shoot dry mass (SDM); Root dry mass (RDM); Dickson Quality Index (DQI).
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model, while the ellipses delimit the data concentration of each class. 
The arrangement of the classes by LDA (Fig. 6) corroborated the 
groupings observed in PCA (Fig. 5). The GY class was clearly separated 
on the right, while the yYR and YR classes were arranged on the left, 
which indicated that the model correctly identified the fruits belonging 
to these maturation stages. Meanwhile, the Ye class was highlighted in 
the center, which reflected the high similarity with the neighboring 
classes. This behavior, typical of transition stages, makes it difficult to 
differentiate these fruits, as observed in studies with cherry tomatoes in 
the half-ripe stage [42]. Avila et al. [44] stated that a portion of studies 
involving image analysis to estimate fruit maturity are unable to accu
rately distinguish intermediate maturation stages. This finding is also 
ratified by the confusion matrix (Table 4).

The confusion matrix was used to evaluate the performance of the 
LDA model, comparing the classes predicted by it with the actual classes 
(Table 4). The diagonal elements (in bold) indicate the correct classifi
cations, while the other values represent classification errors. The GY, 
yYR, and YR classes were classified with 100 % accuracy, while the Ye 
class showed 60 % accuracy. About 40 % of the Ye fruits were errone
ously assigned to other classes, with 20 % to GY; 10 % to yYR and 10 % 
to YR. This confirms the greater variability of colorimetric parameters 
for Ye fruits, making their precise separation difficult, as verified in 
strawberry fruits in intermediate stages [25].

The performance of the model was high, with an accuracy of 90.48 
%, indicating that 9 out of 10 fruits were correctly classified. The Kappa 
index, of 87.17 %, reinforced the model’s reliability by indicating a high 

agreement between the predicted classes and the actual values, adjust
ing for chance. Furthermore, an extremely low p-value (1.18*10-15) 
confirmed the separation between classes was statistically significant. 
Similar studies, employing LDA with RGB average intensity data, re
ported error rates of 17.5 % for mangoes in three maturation stages [24] 
and 33.8 % for four apple stages [17].

The results highlighted the efficiency of LDA in classifying the 
maturation stages of L. tomentosa fruits, especially for the GY, yYR, and 
YR classes. The lower accuracy for the Ye class emphasizes the need for 
complementary investigations, such as the texture and chemical 
composition of the fruits, to increase the model’s precision.

4. Conclusions

For the first time, itt was proposed a robust and non-invasive 
methodology for the selection of L. tomentosa fruits for seedling pro
duction, combining image analysis and machine learning techniques to 
provide objective parameters for the classification of maturation stages.

The characterization of each maturation class in the Munsell color 
chart and its relationship with variations in epicarp coloration (RGB 
system) and seedling performance was evident. Immature fruits, char
acterized by a greenish coloration (Greenish Green-Yellow), exhibited 
lower percentages of seedling emergence, emergence speed, and seed
ling development. Conversely, fruits at more advanced maturation 
stages yielded superior seedling performance, indicating Yellow-Red 
fruits as the most suitable to produce high-quality seedlings. Overall, 
morphological parameters remained stable throughout maturation, 
rendering them ineffective for discriminating between the ripening 
stages of oiti fruits.

The utility of colorimetric analysis integrated with machine learning 
algorithms to optimize fruit selection processes. We specifically exam
ined the predictive capacity of extracted colorimetric features for 
discerning fruit ripening stages, employing Linear Discriminant Analysis 
for model development and validation. The resultant classification 
model demonstrated robust performance across diverse maturation 
stages, exhibiting high accuracy, particularly for fruits categorized as 
Greenish-Green-Yellow, Yellow-Yellow-Red, and Yellow-Red. The pro
posed evaluation approach has potential to boost the rational and 
economically sustainable cultivation of L. tomentosa plants, by enabling 
the rapid and practical detection of propagative material quality, 
regardless of maturation time knowledge.

Fig. 6. Scatterplot of oiti fruit (L. tomentosa) ripening stages classified by Linear Discriminant Analysis based on colorimetric parameters. 
Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow-Red (YR).

Table 4 
Confusion matrix for the prediction of oiti (L. tomentosa) fruit ripening stages, 
characterized based on pericarp coloration using the Munsell color chart.

Classes GY Ye yYR YR
——————— % ———————

GY 100.0 20.0 0 0
Ye 0 60.0 0 0
yYR 0 10.0 100.0 0
YR 0 10.0 0 100.0
Accuracy (%) 90.48
Kappa (%) 87.17
p-value 1.18*10-15

Bold values indicate correct identification performance.
Greenish Green-Yellow (GY); Yellow (Ye); Yellow Yellow-Red (yYR); Yellow- 
Red (YR).
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Certain limitations persists, as our analyses relied on a relatively 
small sample size, and all image acquisitions occurred under controlled 
environmental conditions, which may limit the generalizability of the 
findings to real-world field scenarios. To improve the applicability and 
robustness of the proposed approach, future research should incorporate 
fruit samples derived from diverse mother plant populations and 
conduct image acquisition under natural field conditions. Furthermore, 
exploring alternative color systems beyond RGB, such as HSV (Hue, 
Saturation, Value), CMYK (Cyan, Magenta, Yellow, Key/Black), and 
CIELab (Luminosity, Red-Green axis, Yellow-Blue axis) may confer su
perior sensitivity to discrete fruit ripening stages.

Complementary assessments of fruit traits - including chemical 
composition, firmness, weight, and texture - are also crucial, as they 
could provide more accurate indicators of ripening and support the 
refinement of predictive algorithms. These advancements would not 
only strengthen the reliability of the model but also lay the foundation 
for developing practical tools, including mobile applications for in-field 
use by producers. Moreover, the integration of these data holds the 
potential to the establishment of a comprehensive database for mapping 
and characterizing L. tomentosa populations, thereby supporting more 
efficient seedling production strategies and advancing our knowledge of 
the species’ biodiversity.
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arbóreas nativas do Brasil, 5th ed., Plantarum, Nova Odessa, São Paulo, 1992.

[14] S.C. Grossnickle, Why seedlings survive: influence of plant attributes, New For. 43 
(2012) 711–738, https://doi.org/10.1007/s11056-012-9336-6.

[15] R.S.R. Moreira-Araújo, N.V.A. Barros, R.G.C.L. Porto, A.C.A.S. Brandão, A. Lima, 
R. Fett, Bioactive compounds and antioxidant activity three fruit species from the 
Brazilian Cerrado, Rev. Bras. Frutic. 41 (2019), https://doi.org/10.1590/0100- 
29452019011 e-011.

[16] M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, A. Albarelli, Fruit ripeness 
classification: a survey, Artif. Intell. Agric. 7 (2023) 44–57, https://doi.org/ 
10.1016/j.aiia.2023.02.004.

[17] C. Garrido-Novell, D. Pérez-Marin, J.M. Amigo, J. Fernández-Novales, J. 
E. Guerrero, A. Garrido-Varo, Grading and color evolution of apples using RGB and 
hyperspectral imaging vision cameras, J. Food Eng. 113 (2012) 281–288, https:// 
doi.org/10.1016/j.jfoodeng.2012.05.038.

[18] A.S. Oliveira, T.T. Almeida, R.G.E. Reis, Morfologia interna e externa de diásporos 
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